Temporal Asymmetry of Lagrangian Coherent Structures

Jeffrey Tithof, Balachandra Suri, Michael F. Schatz, Roman O. Grigoriev, Douglas H. Kelley

SIAM Conference on Applications of Dynamical Systems 2019

IST AUSTRIA

Institute of Science and Technology

Timereversibility in fluid dynamics

(G. I. Taylor 1960)

Time-asymmetry in fluid dynamics

- Flight-crash events (rapid particle deceleration)
 - Haitao et al, PNAS 2014

- **Pair dispersion** (in 2D, particles disperse faster in forward than backward time; opposite in 3D)
 - Faber & Vassilicos, Phys. Fluids 2009
 - Jucha et al, PRL 2014
 - Buaria et al, Phys. Fluids 2015
 - Bragg et al, Phys. Fluids 2016

Bourgoin et al, Science 2006

Lagrangian Coherent Structures (LCSs)

- Analogs of classical invariant manifolds for unsteady flows
- FTLE: $\Lambda(\mathbf{x}, t, T) = \frac{1}{T} \log(S)$, where $S = \sqrt{\lambda_{\max}}$ uses max eigenvalue of Cauchy-Green strain tensor
- ±T gives forward/backward FTLEs

Generalization of saddles defined over interval [t, t+T]

Forward FTLE ridges are most repelling material lines Backward FTLE ridges are most attracting material lines

Lagrangian coherent structures (LCSs)

- Dominant barriers to transport in unsteady flows
 - Table-top experiments
 - Atmospheric and oceanic flows
 - Biological flows (e.g. blood)
- Review articles:
 - Peacock & Haller, Phys. Today 2013
 - Haller, Ann. Rev. Fluid Mech. 2015
 - Allshouse & Peacock, Chaos 2015
- Little research regarding time-asymmetry of LCS

2D flow example: LCSs (red) guide the dye distribution

Voth, Haller, & Gollub. PRL 2002

Experimental setup

Lorentz Force

 $\mathbf{F} = \mathbf{J} \times \mathbf{B}$

Kolmogorov flow F $\approx A \sin(\pi y/L) \hat{x}$

Checkerboard flow $F \approx A \sin(\pi x/L) \sin(\pi y/L) \hat{x}$

LCS Asymmetry (Ouellette et al. *Phys. Fluids* 2016)

Forward FTLEs repelling LCSs)

Single FTLE field Ensemble average

- Kolmogorov flow (stripes)
- Long time series at Re=235
 - 74k frames
 - $700 T_0$
 - ~20 min
- Clear asymmetry in the ensemble averages

Backward FTLEs (Ridges are attracting LCSs)

(Ridges are

Open questions about LCS asymmetry

- 1. Present in different geometries?
- 2. How does it change with Re?
- 3. Is there a connection to other known turbulent phenomena?

Answer questions by studying the **checkerboard flow** Use **experiments** and realistic **numerical simulations**

Realistic 2D numerical simulation

- Accurately captures details of experiment:
 - domain size
 - lateral boundary conditions (no-slip)
 - effect of velocity profile along z
 - electromagnetic forcing
- Full details:
 - Tithof et al, J. Fluid Mech. 2017.
 - Suri et al, Phys. Fluids 2014.
- Calculate LCSs in central 4x4 region for experiment and simulation

LCSs for Re \approx 130 (Chaotic flow)

Experiment

Repelling LCSs (Forward FTLE ridges)

Attracting LCSs (Backward FTLE ridges)

Ensembles computed for $[t, t+T_0]$ as t varies

Pointwise LCS Probabilities for Re \approx 130 (Chaotic flow)

Experiment

Simulation

Repelling LCSs

Attracting LCSs

Answer to Q1: Asymmetry is also present in the checkerboard configuration Q2: How does this asymmetry change with Re? Use simulations

Series of bifurcations

0.2 LCS Probability

Area Fractions for Nonzero Probability of Finding an LCS

Q2. How does this asymmetry change with Re?It grows with Re. The periodic orbit plays an important role.

What is the mechanism of the asymmetry?

Hyperbolic points move preferentially along the repelling LCSs

A toy model

Same trend (hyperbolic points

move along repelling LCSs)

$\psi = \sin(2\pi x) \sin(2\pi y)$ $+ \sin(\omega t) [\sin(2\pi y) \sin(\pi x + \pi y)$ $+ \sin(2\pi x) \cos(\pi x - \pi y)]$ $\vec{u} = \frac{\partial \psi}{\partial y} \hat{x} - \frac{\partial \psi}{\partial x} \hat{y}$

Opposite trend (hyperbolic points move along attracting LCSs)

Toy model reproduces same and opposite area fractions

Same trend (hyperbolic points move along repelling LCSs)

Area Fraction: 0.23

Area Fraction: 0.33

Opposite trend (hyperbolic points move along attracting LCSs)

Area Fraction: 0.33

Area Fraction: 0.23

Energy flux across length scales

Nonlinearity of Navier-Stokes couples different length scales

3D: energy cascade (net flow to smaller length scales)

2D: inverse energy cascade (net flow to larger length scales)

Compute energy transfer using filter-space techniques

- Eyink, J. Stat. Phys. 1995
- Rivera et al, PRL 2003
- (many more)

Test our toy model using this technique

Toy model energy flux

Same trend (hyperbolic points move along repelling LCSs)

Opposite trend (hyperbolic points move along attracting LCSs)

Conclusions

- LCSs exhibit a temporal asymmetry
 - Attracting LCSs vs repelling LCSs
 - Present in 2 different geometries
 - Implications for forecasting mixing
- Asymmetry grows with Re
- Hyperbolic points move preferentially along repelling LCSs
- Toy model: suggests link to inverse energy cascade of 2D turbulence
- Future work: explore LCS asymmetry in 3D

Repelling LCSs

Attracting LCSs

LCS Probability