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Data Assimilation: What and Why?
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ILarge family of methods to perform
state/parameter/model estimation by combining (taking
the best of) models and data.

IThe quantities of interest are probability density
functions (PDFs).

IThey quantify the uncertainty on the estimate.

IThe goal is to sequentially estimate the conditional
PDF p(x|y), the posterior.

IThe PDFs are evolved in time and updated at analysis
times using Bayes’ rule.

p(xK:0|yK:1) ∝ p(x0)
K∏

k=1

p(yk|xk)p(xk|xk−1)
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DA methods in geosciences: key challenges

IHuge models, m ≥ 109 & massive dataset, d ≥ 107 daily obs (yet not enough!) =⇒ Quest for
computationally affordable solutions.

IFully Bayesian DA very difficult (curse of dimensionality).

IGaussian/Linear hypotheses allow to derive computationally tractable methods =⇒ Kalman
filter/smoother.

IAnd their Monte Carlo, (still Gaussian) nonlinear approx, ensemble Kalman
filter/smoother.

IThe transition density, p(xk|xk−1), approximated by running an ensemble of N trajectories.

IEnKF highly rank deficient in geophysical applications: N = O(102) � m. Yet it works!
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DA methods for chaotic dynamics: key challenges

IAtmosphere and ocean, are examples of chaotic dissipative dynamics =⇒ Highly state-dependent error
growth.

IDA must track and incorporate this flow-dependency in the quantification of the uncertainty (i.e. error
covariance).

IDissipation induces an “effective” dimensional reduction =⇒ The error dynamics is confined to a
subspace of much smaller dimension, n0 � m: the unstable subspace

IThe existence of the underlying unstable-stable splitting of the phase space expected to have enormous
impact on DA.

Motivations

1 Is there any fingerprint of the unstable subspace on the fate of (En)KF and (En)KS?

2 Can dynamical properties be used to design computationally cheap DA strategies?
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Deterministic linear case: behavior of the KF and KS

(Some) key analytic results (without controllability):

ICollapse of the uncertainty: KF error covariance
asymptotically in the span of the unstable-neutral
backward Lyapunov vectors (BLVsu) [Gurumoorthy et al
2017]

IConvergence of the covariance: Low rank, n0, KF
covariance, initialized in the span of BLVsu, converges to
the true KF one

lim
k→∞

||Pk − P̂k|| = 0

if the unstable-neutral subspace is observed [Bocquet et al
2017]. Warning: neutral modes are tricky!

m = 40, n0 = 14

ILikewise demonstrated for Kalman smoother [Bocquet & Carrassi 2017].

KF/KS reduced rank surrogates based on BLVs are possible.
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Deterministic nonlinear case: behavior of the EnKF and EnKS

IAsymptotic rank of EnKF covariances related to multiplicity and strength of unstable Lyapunov
exponents (LEs) [Carrassi et al 2009; Gonzalez-Tokman & Hunt 2013].

IWhen the EnKF/EnKS ensemble subspace recovers the unstable subspace the unknown system state is
estimated with high accuracy (sudden drop of RMSE) [Bocquet & Carrassi, 2017].

Lorenz 96 model, m = 40,
n0 = 14

Left - Angle Unstable/Ensemble
subspaces vs (∆tobs, σobs).

Right - EnKF RMSE (green)
and Angle (purple) vs N .
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Nonlinear systems, with “weakly nonlinear” error dynamics, need only n0 members!
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Error in stochastic models: What the role of the instabilities?

xk =Mk:k−1(xk−1) + ηk, ηk ∈ N (0,Qk)

IBy re-introducing perturbations, the error
covariance is generally full rank (as Qk).

IAsymptotic uncertainty in the stable BLVs no
longer zero, but still bounded.

IHowever, the bounds, Ψi
k, depend on [Grudzien

et al 2018a]
1 the model error size (i.e. ||Q||),
2 the variance of the local LEs (LLEs).

m = 10 and n0 = 4

I If model error is large and/or the LLEs have high variance, the bounds will be impractically large.

In stochastic systems it is necessary to include weakly stable BLVs of high variance.
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Error in stochastic models: The upwelling effect

IWill the necessary increase N = n0 → n0 + nws also be sufficient?

ITo answer this, write the model propagator in the basis of the BLVs using the recursive QR
decomposition

Mk = EkUkE
T
k , Ek = (Ef

k Eu
k) with Uk =

(
Uff
k Ufu

k

0 Uuu
k

)
and partition the error into filtered/unfiltered variables εk = Ef

kε
f
k + Eu

kε
u
k

IThe error in the filtered space (“seen” by DA) is given recursively by [Grudzien et al 2018b]

εf
k+1 = (Uff

k+1 −Uff
k+1KkHkE

f
k)ε

f
k −Uff

k+1Kkε
obs
k + ηf

k + (Ufu
k+1 −Uff

k+1KkHkE
u
k)ε

u
k

IThe terms in black correspond to the usual KF-like recursion and highlight the stabilizing effect of
the DA [Carrassi et al 2008b].

IThe terms in red disappear when the filtered subspace is the entire state space (n = m).
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Error in stochastic models: The upwelling effect

IWhen n < m, they represent the dynamical upwelling of the unfiltered error into the filtered
variables [Grudzien et al 2018b].

I It moves uncertainty from unfiltered to filtered subspace, i.e. from the stabler to the unstable subspace.

IThis phenomenon occurs whenever n < m, but is exacerbated by stochastic noise.

ILeads to underestimating the error in the (En)KF ⇒ Need for inflation to prevent divergence.

EKF solves the full-rank recursion.

EKF-AUS solves the low-rank recursion
without upwelling (black terms only).

EKF-AUSE solves the low-rank recursion
with upwelling (black+red terms).
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EnKF/KS with chaotic systems: A summary on the required ensemble size

I Illustration of the minimum number of ensemble
members to achieve filter accuracy.

IDifferent model scenarios are given in the
x-axis.

IThe number of members (samples) is given in
the y-axis with:

n0: number of unstable-neutral BLVs.

nws: number of unstable-neutral BLVs + weakly stable.

nms: number of unstable-neutral BLVs + weakly stable
+ more stable.

nall: number of member = model dimension (i.e.
full-rank filter).

Grudzien et al 2018b
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Assimilation in the unstable subspace - AUS

IThese properties are at the basis of the assimilation in the unstable subspace (AUS, by
A. Trevisan & Collaborators), where the unstable subspace is explicitly used in the DA to:

parametrize the description (both temporally and spatially) of the uncertainty in the state
estimate (i.e. the covariance) ⇐⇒ Acting on K [Trevisan et al 2010; Trevisan & Palatella
2011; Palatella & Trevisan 2015]

design of the observational network (types, distribution, frequency) ⇐⇒ Acting on the
operator H [Trevisan & Uboldi, 2004; Carrassi et al 2007]

or both [Carrassi et al 2008a; 2008b]

Carrassi, Grudzien, Bocquet DA for chaotic systems - SIAM DS 2019 23rd May 2019 11 / 18



Projecting the data in the unstable subspace - Conditions for filter stability

KF with data projected on a subspace of dimension d compared to a full KF.
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[Grudzien et al 2018a]

IHfd - Observe within the subspace of the d
leading FLV ⇒ Satisfy a weaker necessary
condition [Frank and Zhuk 2018]

IHbd - Observe within the subspace of the d
leading BLV . ⇒ Satisfy a stronger sufficient
condition [Bocquet et al 2017]

I Id×n - Observe the first d components.

IProjected observations based on dynamics
was studied earlier by [Law et al 2016].
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AUS and Target Observations

TARGET OBSERVATION STRATEGY: Breeding on the Data Assimilation System BDAS

Quasi-geostrophic atmospheric
model (Rotunno and Bao, 1996
MWR)
Perfect model setup -
Observation Dense area (1-20
Longitude) - Target Area, one
obs between 21-64 Longitude

Experiment Ocean Obs Type/Positioning/Assimilation RMSE
LO - 0.462
FO vert.Prof/fixed(in the max(err))/3DVar 0.338
RO vert.Prof/random/3DVar 0.311

3DVar-BDAS vert.Prof/BDAS/3DVar 0.184
AUS-BDAS temp.1-Level/BDAS/AUS 0.060

Carrassi et al 2007
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Hybrid 3DVar-AUS: Enhancing the performance of a 3DVar using AUS
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Carrassi et al 2008a

IQG model on a β-plane; network of randomly distributed obs (vertical soundings).
I 3DVar-AUS: (1) AUS assimilates the obs located on the unstable mode; (2) 3DVar process the
remaining obs.
I 3DVar-AUS comparable to EnKF with only one unstable mode ⇒ Reduced computational cost and
implementation on a pre-existing 3DVar scheme.
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Does stabilization improve estimation?

Quasi-Geostrophic Model (Rotunno and Bao, 1996)
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IDA “always” provides a stabilizing effect (e.g. compare 3DVar with free system Lyapunov
spectrum) but ...
I if the DA is designed to kill the instabilities, the estimation error is efficiently reduced

Carrassi et al 2008b
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Conclusions

IWe have shown that the (En)KF/(En)KS in deterministic dynamics naturally project the uncertainty
on the unstable-neutral subspace ⇒ N = n0 members are sufficient.

IThese properties are at the basis of the assimilation in the unstable subspace (AUS, by
A. Trevisan & Collaborators), where the unstable subspace is explicitly used in the DA process.

IAUS has been successfully applied to deterministic atmospheric, oceanic and traffic models [see
Palatella et al 2013 for a review].

I In stochastic dynamics we have shown that weakly stable modes of high variance must be be included.

IFurthermore we have demonstrated the existence of an upwelling of uncertainty from
unfiltered-to-filtered subspace that motivates the need for multiplicative inflation.

IAll has been done within a Gaussian framework ⇒ Can the unstable subspace be used to develop
efficient fully Bayesian (Particle Filters) methods? Maybe... [see Maclean & Van Vleck 2019 - Next talk.]
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