MT1: Dynamic Mode Decompositions and Koopman Analysis

Introduction to Koopman Analysis

Marko Budišić

with J. Nathan Kutz (U Wash), M. Hematı (U Minn)

Department of Mathematics and
Clarkson Center for Complex Systems Science ($\mathrm{C}^{3} \mathrm{~S}^{2}$)
Clarkson University, Potsdam, NY
SIAM DS19 Snowbird, 2019

■ Koopman operator: exact linear representation of (nonlinear) dynamics
■ Koopman eigenfunctions: generalize Lyapunov functions, isochrons,...

- Koopman modes: in spirit, analogous to normal modes for linear PDEs
■ data-driven (model-free) calculation enabled by (a family of) Dynamic Mode Decomposition (DMD) algorithm(s) (see J. N. Kutz's talk)
- can be applied to reduced-order modeling, global linearization, system ID, sensitivity, control... (see M. Hemati's talk)

Related sessions

■ MS48 Koopman Operator Techniques in Dynamical Systems: Theory
■ MS61 Advanced Data-Driven Techniques and Numerical Methods in Koopman Operator Theory - Part I of II

■ MS74 Advanced Data-Driven Techniques and Numerical Methods in Koopman Operator Theory - Part II of II
■ MS86 Applications of Koopman Operator Theory in Dynamical Systems: From Fluids, through Machine Learning to Energy - Part I of II
■ CP10 Data and Koopman Analysis
■ MS97 Applications of Koopman Operator Theory in Dynamical Systems: From Fluids, through Machine Learning to Energy - Part II of II
■ MS147 Control Techniques based on Koopman Operator Theory - Part I of II
■ MS160 Control Techniques based on Koopman Operator Theory - Part II of II
■ MS164 Theory and Application of Koopman Operator Methods in Molecular Simulation

- CP36 Koopman Analysis

■ ... and a whole bunch of sessions on reduced-order models, data-driven nonlinear analysis, etc.

1 History and Present
2 Introduction
3 Koopman eigenfunctions
4 Koopman modes

Goals of this talk:

- explain the basics
- give some intuition
- point to active research areas

History and Present

Bernard Koopman

Vol. 17, 1931
MATHEMATICS: B. o. KOOPMAN
HAMILTONIAN SYSTEMS AND TRANSFORMATIONS IN HILBERT SPACE

By B. O. KOOPMan
Defakiament of Mathematics, Colunbla Univekarty

George Birkhoff

VoL. 18, 1032 MATHEMATICS: BIRKHOFF AND KOOPMAN 270 RECENT CONTRIBUTIONS TO THE ERGODIC THEORY

By G. D. Birkhofy and B. O. Koopman
Drpartmryt op Mathematics, Harvard Uyivzrsity

John von Neumann
ZUR OPERATORENMETHODE IN DER KLASSISCHEN MECHANIK ${ }^{\prime}$

Tox J. v. Neumann, Pbifcerox

Although Koopmanism (then: Koopmania) was present in 90s monographs. . .

$\begin{array}{r} \text { Applied } \\ \text { Mathematical } \\ \text { Sciences } \\ 97 \end{array}$	Andrzej Lasota Michael C. Mackey Chaos, Fractals, and Noise Stochastic Aspects of Dynamics	Chaos, Scattering and Statistical Mechanics Pierre Gaspard	chaos classical and quantum Predrag Cvitanović - Roberto Artuso Per Daniqvist - Niall Whelan

It's the development of data-driven algorithms. . .

.. that brought us here.

Introduction

DYNAMICS AND MEASUREMENTS

Dynamics of states

Linear system $\underline{z}(t)=\left[\begin{array}{l}x(t) \\ y(t)\end{array}\right]$

$$
\begin{aligned}
& \underline{\dot{z}}(t)=\underset{\mathbf{A} \underline{z}(t), \underline{z}(0)=\underline{z}_{0} \quad \text { (ODE) }}{\underline{z}(t)=\underbrace{\exp (\mathbf{A} t) \underline{z}_{0}}_{\phi^{\prime}\left(z_{0}\right)} \quad \text { (Flow map) }}
\end{aligned}
$$

Dynamics of measurements

Measurement (observable)

$h: \mathbb{R}^{2} \rightarrow \mathbb{R}$, evolves along a trajectory according to:

$$
h_{t}\left(\underline{z}_{0}\right)=h(\underline{z}(t))=h\left(\Phi^{t}\left(\underline{z}_{0}\right)\right)
$$

Koopman Operator evolves measurements.

General nonlinear systems:

$$
\begin{align*}
& \dot{z}(t)=f(z(t)), \underline{z}(0)=\underline{z}_{0} \quad \text { (ODE) } \tag{ODE}\\
& \underline{z}(t)=\Phi^{t}\left(z_{0}\right) \quad \text { (Flow map) }
\end{align*}
$$

Measurement evolution:

Koopman operator

$$
\begin{aligned}
\mathbb{K}^{t}: \text { Fun } & \rightarrow \text { Fun } \\
{\left[\mathbb{K}^{t} h\right](\underline{z}) } & =h\left(\Phi^{t}(\underline{z})\right) \\
\mathbb{K}^{t} h & =h \circ \Phi^{t}
\end{aligned}
$$

a.k.a. pull-back by evolution/flow a.k.a. composition operator

Starting to compute with Koopman. . .

K< $<$ D $\gg \rightarrow+ \pm$

Duffing $\mathrm{f}_{\mathbf{2}}(\mathrm{z}) ; \quad \mathbf{t}=\mathbf{0 . 0 0}$

Recipe:

- Seed a grid of initial conditions z_{k}
- Compute a trajectory from each point
$z_{k} \rightsquigarrow z_{k}(t)$
- Evaluate the (scalar) function

$$
f\left(z_{k}(t)\right)=: \mathbb{K}^{t} f\left(z_{k}\right) \text { at }
$$ final point

- Plot color field $\mathbb{R}^{2} \mapsto \mathbb{R}$

$$
z_{k} \mapsto\left[\mathbb{K}^{t} f\right]\left(z_{k}\right)
$$

KOOPMAN OPERATOR IS LINEAR.

Koopman operator $\mathbb{K}:$ Fun \rightarrow Fun is
linear by construction

$$
\underbrace{(\alpha f+\beta g) \circ \Phi^{t}}_{\mathbb{K}^{t}(\alpha f+\beta g)}=\alpha \underbrace{f \circ \Phi^{t}}_{\mathbb{K}^{t} f}+\beta \underbrace{g \circ \Phi^{t}}_{\mathbb{K}^{t} g}
$$

No magic: this is not linearity in state variables

$$
\mathbb{K} f(\alpha z+\beta w) \neq \mathbb{K} f(\alpha z)+\mathbb{K} f(\beta w)
$$

Trade-off

Flow map $\Phi^{t} \quad$ Koopman 0. \mathbb{K}^{t}
 Non-linear Linear Finite dim. $\quad \infty$-dim.

No trade off if Φ^{t} is ∞-dimensional itself!

Spectral theory

■ ergodic dynamics $+L_{2}$ space of observables $=\mathbb{K}$ is unitary

- in this case, Koopman op. is adjoint to the Perron-Frobenius transfer operator

Spectral Decomposition of the Koopman Operator

$$
\mathbb{K}^{n} f=\int_{-\pi}^{\pi} e^{i n \omega} d[\mathbb{E}(\omega) f]=\underbrace{\sum_{k} e^{i n \omega_{k}} \mathbb{P}_{k} f}_{\text {atomic }}+\underbrace{\int_{-\pi}^{\pi} e^{i n \omega} d\left[\mathbb{E}_{c}(\omega) f\right]}_{\text {continuous }} .
$$

■ atomic spectrum \rightarrow eigenvalues \rightarrow (quasi)regular dynamics
■ a.c. spectrum \rightarrow density function \rightarrow mixing dynamics
■ s.c. spectrum \rightarrow fractal \rightarrow "anomalous transport"

- approximation of the Koopman operator from data

■ computational spectral analysis
■ interpretation and application of results
The PDF of this talk online (soon) on my website:

Google

marko clarkson math
All News Images Videos Maps
About 155,000 results (0.32 seconds)

Marko Budišić - Clarkson University
https://people.clarkson.edu/~mbudisic/

Koopman eigenfunctions

Eigenfunctions For linear dynamics (SAdDle)

$$
\begin{aligned}
& \dot{z}(t)=\mathbf{A} z(t), z(0)=z_{0} \\
& z(t)=\exp (\mathbf{A} t) z_{0}
\end{aligned}
$$

Given left eigenvector at $\lambda \in \mathbb{R}$:

$$
v^{*} \mathbf{A}=\lambda v^{*}, \quad v^{*} \exp (\mathbf{A} t)=e^{\lambda t} v^{*}
$$

Functions

$$
h(z)=v^{*} z
$$

are eigenfunctions at $e^{\sigma t}$

$$
\begin{aligned}
h(z) & =\left(v^{*} z\right) \\
\mathbb{K}^{t} h(z) & =v^{*} e^{\mathbf{A} t} z=e^{\lambda t} \underbrace{v^{*} z}_{h(z)}
\end{aligned}
$$

Structure of level sets stays constant in time. Values grow/decay according to eigenvalues.

Eigenfunctions for linear dynamics (Focus)

$$
\begin{aligned}
& \dot{z}(t)=\mathbf{A} z(t), z(0)=z_{0} \\
& z(t)=\exp (\mathbf{A} t) z_{0}
\end{aligned}
$$

Given left e.-vectors $v_{+}, v_{-}=\bar{v}$ at $\sigma \pm i \omega$:

$$
v_{ \pm}^{*} \mathbf{A}=\lambda v_{ \pm}^{*}, \quad v_{ \pm}^{*} \exp (\mathbf{A} t)=e^{\sigma t \pm i \omega t} v^{*}
$$

Functions

$$
h(z)=\left(v^{*} z\right)\left(\bar{v}^{*} z\right)
$$

are eigenfunctions at $e^{\sigma t}$

$$
\begin{aligned}
h(z) & =\left(v^{*} z\right)\left(\bar{v}^{*} z\right)=\left|v^{*} z\right|^{2} \\
\mathbb{K}^{t} h(z) & =\left(v^{*} e^{\mathbf{A} t} z\right)\left(\bar{v}^{*} e^{\mathbf{A} t} z\right)=e^{\sigma t} \underbrace{\left(v^{*} z\right)\left(\bar{v}^{*} z\right)}_{h(z)}
\end{aligned}
$$

Level sets correspond to a Lyapunov function $\left|v^{*} z\right|^{2}$ and isochrons $\angle\left(v^{*} z\right)$.

How to calculate eigenfunctions

Trajectory averages $z_{n+1}=\Phi\left(z_{n}\right)$ project any observable onto an eigenfunction:

$$
h_{\omega}\left(z_{0}\right)=\lim _{N \rightarrow \infty} \bar{N} \sum_{n=0}^{N-1} \underbrace{\lambda^{n}}_{\text {E-value. }} \overbrace{h\left(z_{n}\right)}^{\left[\mathbb{K}^{n} h\left(z_{0}\right)\right.}
$$

■ Ergodic average - $\lambda=0$ - invariant functions
■ Harmonic average $-\lambda=e^{i \omega}$ - (quasi)periodic functions

Recipe for eigenfunctions

1. Seed a grid of initial conditions z_{k}.
2. Simulate (long) trajectories $z_{k} \rightsquigarrow z_{k}(t)$.
3. Choose an observable and a frequency ω.
4. Compute the harmonic average and visualize $z_{k} \mapsto h_{\omega}\left(z_{k}\right)$. (If you choose a non-eigenvalue $e^{i \omega}$ you'll get $h_{\omega} \equiv 0$.)

EIgENFUNCTIONS FOR NONLINEAR DYNAMICS

Ergodic Average (double-well oscillator)

- Ergodic averages of observables are conserved quantities.
- Level sets of ergodic averages are invariant sets.

Ergodic avg. of $h(z)=z_{1}$

Harmonic Average (van der Pol oscillator)

- Angle of harmonic average of $h(z)=z$ at frequency of limit cycle.
- Level curves are isochrons.

Active Research Topics

■ spectral theory for transient (non-steady-state) dynamical systems

- global stability and global linearization based on Koopman eigenfunctions
- control and system identification based on Koopman spectral analysis

■ numerical methods for approximations and analysis of Koopman operator

- investigations into the spectral measure and non-atomic Koopman spectrum
- rigorous extensions of the Koopman theory for PDEs and SPDEs
- Koopman theory in reproducing kernel Hilbert spaces

IPAM Operator Theoretic Methods in Dynamic Data Analysis and Control, Feb 2019, (link with videos)

[^0]
Koopman modes

Linear PDEs: Normal mode analysis

- States: Simulated 16 linear oscillators
■ Observables: Displacement between them (polynomial interpolation)
- Observables are indexed by x there is a continuum of them.

■ Interpretation: discretized wave equation.
■ Normal modes: x-spatial profiles oscillating at isolated frequencies (standing waves).

- Modes do not depend on state representation (could have used spectral instead of FD solver...)

Many observables through lens of 1 EIGENFUNCTION

it $t \in \operatorname{span}$ (eigenfunctions) we can decompose it into eigenfunctions.

$$
\begin{aligned}
f(z) & =\sum_{k} \underbrace{m_{k}}_{\text {Coefficients }} \overbrace{h_{k}(z)}^{\text {E-fun. }} \quad \text { (Observable) } \\
\mathbb{K}^{t} f(z) & =\sum_{k} \underbrace{m_{k}}_{\text {Coefficients }} \overbrace{\lambda_{k}^{t}}^{\text {E-val. }} h_{k}(z) \quad \text { (Evolution) }
\end{aligned}
$$

Now, consider many observables $f_{x}(z)$ for $x \in S$

$$
\mathbb{K}^{t} f_{x}(z)=\sum_{k} \underbrace{m_{k}(x)}_{\text {Koopman mode }} \lambda_{k}^{t} h_{k}(z)
$$

Koopman mode $m_{k}(x)$

Demonstrates importance of eigenvalue λ_{k} across a measurements indexed by x.

Normal mode analysis

■ model-dependent

- analytic
- works for select (non)linear systems

Koopman mode analysis

- model-free (data-driven)
- computational
- works for all (non)linear systems (they are after all just \mathbb{K})

KOOPMAN MODES FOR LINEAR VIBRATIONS

- Based on a single trajectory of dynamics
- Eigenvalues match the linear analysis
- Modes correctly capture the expected standing waves

■ ... but don't they look a bit funny at ends?
■ Different trajectory (initial condition) could excite different modes

KOOPMAN MODES FOR LINEAR VIBRATIONS

- Based on a sinale traiectory of dynamics

Computation (Dynamic Mode Decomposition)

Simulation data \Rightarrow SVD \Rightarrow EIG \Rightarrow done.

... (much) more on this in the coming parts.

Koopman mode analysis extends normal modes TO NONLINEAR DYNAMICS.

J. Fluid Mech. (2009), vol. 641, pp. 115-127. (C) Cambridge University Press 2009
doi:10.1017/S0022112009992059

115

Spectral analysis of nonlinear flows

CLARENCE W. ROWLEY ${ }^{1} \dagger$, IGOR MEZIC ${ }^{2}$, SHERVIN BAGHERI ${ }^{3}$, PHILIPP SCHLATTER ${ }^{3}$ AND DAN S. HENNINGSON ${ }^{3}$
${ }^{1}$ Department of Mechanical and Aerospace Engineering, Princeton University, NJ 08544, USA
${ }^{2}$ Department of Mechanical Engincering, University of California, Santa Barbara, CA 93106-5070, USA ${ }^{3}$ Linné Flow Centre, Department of Mechanics, Royal Institute of Technology (KTH), SE-10044 Stockholm, Sweden
(Received 15 May 2009; revised 8 September 2009; accepted 9 September 2009; first published online 18 November 2009)

(b)

Where to start reading (a non-EXHAUSTIVE LIST)

Papers:

Applied Koopmanism

Marko Budišić, Ryan Mohr, and Igor Mezic
Citation: Chaos: An Interdisciplinary Journal of Nonlinear Science 22, 047510 (2012); doi: 10.1063/1.4772195

Gemn. Rev, Fluaid Mech. 2013.45057-78
 Firs published anline as Review in Alvanex ani Oader S,2012
 he Amour Netive offraid Madmir tocoline ar
 niidannualreviensoxy

 Copyright (c) 2013 by Annual Recieus Al nidur resaved
 Analysis of Fluid Flows via
 Spectral Properties of the
 Koopman Operator
 Igor Mezić
 Deparment of Mechanical Enginecring, University of CLIFforria Sunta Bartura

J Nonlinear Sci (2012) 22:887-915 DOI 10.1007/s00332-012-9130-9

Nonlinear Science

Variants of Dynamic Mode Decomposition: Boundary Condition, Koopman, and Fourier Analyses
Kevin K. Chen - Jonathan H. Tu -
Clarence W. Rowley

Books:

Upcoming books:

- I. Mezić on spectral analysis of dynamical systems
- S. Brunton et al. on data-driven methods in dynamics

■ Koopman operator: exact linear representation of (nonlinear) dynamics
■ Koopman eigenfunctions: generalize Lyapunov functions, isochrons,...

- Koopman modes: in spirit, analogous to normal modes for linear PDEs
■ data-driven (model-free) calculation enabled by (a family of) Dynamic Mode Decomposition (DMD) algorithm(s) (see J. N. Kutz's talk)
- can be applied to reduced-order modeling, global linearization, system ID, sensitivity, control... (see M. Hemati's talk)

[^0]: Speakers: Nelida Črnjarić-Žic (University of Rijeka) Zlatko Drmač (University of Zagreb) Maria Fonoberova (AIMdyn) Gary Froyland (University of New South Wales) Dimitris Giannakis (New York University, Courant Institute of Mathematical Sciences) Didier Henrion (Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Analyse et d'Architecture des Systemes (LAAS)) Maria Infusino (Universität Konstanz) Oliver Junge (Technical University of Munich) Milan Korda (Centre National de la Recherche Scientifique (CNRS)) J. Nathan Kutz (University of Washington, Applied Mathematics) Jean Lasserre (Université de Toulouse III (Paul Sabatier), LAAS-CNRS) Yuri Latushkin (University of Missouri-Columbia) Senka Maćešić (University of Rijeka) Krithika Manohar (California Institute of Technology, Computing and Mathematical Sciences) Alexandre Mauroy (Université de Namur) Igor Mezic (University of California, Santa Barbara (UCSB), Mechanical Engineering) Ryan Mohr (University of California, Santa Barbara (UCSB)) Nader Motee (Lehigh University, Mechanical Engineering and Mechanics) Hiroya Nakao (Tokyo Institute of Technology) Frank Noe (Freie Universität Berlin) Mihai Putinar (University of California, Santa Barbara (UCSB), Mathematics) Peter Schmid (Imperial College, Mathematics) Amit Surana (United Technologies Research Center) Umesh Vaidya (lowa State University, Mechanical Engineering) Irène Waldspurger (Université de Paris IX (Paris-Dauphine)) Tillmann Weisser (Los Alamos National Laboratory) Enoch Yeung
 (University of California, Santa Barbara (UCSB))

