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In a nutshell...

Koopman operator:
exact linear representation of (nonlinear) dynamics
Koopman eigenfunctions:
generalize Lyapunov functions, isochrons,. . .
Koopman modes:
in spirit, analogous to normal modes for linear PDEs
data-driven (model-free) calculation enabled by (a family of)
Dynamic Mode Decomposition (DMD) algorithm(s) (see
J. N. Kutz’s talk)
can be applied to reduced-order modeling, global linearization,
system ID, sensitivity, control... (see M. Hemati’s talk)
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Related sessions

MS48 Koopman Operator Techniques in Dynamical Systems: Theory
MS61 Advanced Data-Driven Techniques and Numerical Methods in Koopman Operator
Theory - Part I of II
MS74 Advanced Data-Driven Techniques and Numerical Methods in Koopman Operator
Theory - Part II of II
MS86 Applications of Koopman Operator Theory in Dynamical Systems: From Fluids,
through Machine Learning to Energy - Part I of II
CP10 Data and Koopman Analysis
MS97 Applications of Koopman Operator Theory in Dynamical Systems: From Fluids,
through Machine Learning to Energy - Part II of II
MS147 Control Techniques based on Koopman Operator Theory - Part I of II
MS160 Control Techniques based on Koopman Operator Theory - Part II of II
MS164 Theory and Application of Koopman Operator Methods in Molecular Simulation
CP36 Koopman Analysis
. . . and a whole bunch of sessions on reduced-order models, data-driven nonlinear analysis,
etc.

2 / 22



3 / 22

1 History and Present
2 Introduction
3 Koopman eigenfunctions
4 Koopman modes

Goals of this talk:
explain the basics
give some intuition
point to active research areas



History and Present
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Bernard Koopman George Birkhoff John von Neumann



Although Koopmanism (then: Koopmania) was present in 90s monographs. . .

It’s the development of data-driven algorithms. . .

. . . that brought us here.
5 / 22



Introduction



Dynamics and measurements
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Dynamics of states
Linear system z(t) =

[
x(t)
y(t)

]
ż(t) = Az(t), z(0) = z0 (ODE)
z(t) = exp (At) z0︸ ︷︷ ︸

Φt (z0)

(Flow map)

Dynamics of measurements
Measurement (observable)
h : R2 → R, evolves along a
trajectory according to:

ht(z0) = h(z(t)) = h(Φt(z0))



Koopman Operator evolves measurements.
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General nonlinear systems:

ż(t) = f(z(t)), z(0) = z0 (ODE)
z(t) = Φt(z0) (Flow map)

Measurement evolution:

Koopman operator

Kt : Fun→ Fun

[Kt h](z) = h(Φt(z))

Kt h = h ◦ Φt

a.k.a. pull-back by evolution/flow
a.k.a. composition operator



Starting to compute with Koopman. . .
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Recipe:

Seed a grid of initial
conditions zk

Compute a trajectory
from each point
zk  zk(t)
Evaluate the (scalar)
function
f(zk(t)) =: Kt f(zk) at
final point
Plot color field R2 7→ R

zk 7→ [Kt f ](zk)



Koopman operator is linear.

9 / 22

Koopman operatorK : Fun→ Fun is
linear by construction

(αf + βg) ◦ Φt︸ ︷︷ ︸
Kt (αf+βg)

= α f ◦ Φt︸ ︷︷ ︸
Kt f

+β g ◦ Φt︸ ︷︷ ︸
Kt g

No magic: this is not linearity in state variables

K f(αz + βw) 6= K f(αz) + K f(βw)

Trade-off
Flow map Φt Koopman o. Kt

Non-linear Linear
Finite dim. ∞-dim.

No trade off if Φt is∞-dimensional itself!



Spectral theory

ergodic dynamics + L2 space of observables =K is unitary
in this case, Koopman op. is adjoint to the Perron–Frobenius transfer operator

Spectral Decomposition of the Koopman Operator

Kn f =

∫ π

−π
einωd[E(ω)f ] =

∑
k

einωkPk f︸ ︷︷ ︸
atomic

+

∫ π

−π
einωd[Ec(ω)f ]︸ ︷︷ ︸
continuous

.

atomic spectrum→ eigenvalues→ (quasi)regular dynamics
a.c. spectrum→ density function→ mixing dynamics
s.c. spectrum→ fractal→ “anomalous transport”
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What is applied Koopman analysis?
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approximation of the Koopman operator from data
computational spectral analysis
interpretation and application of results

The PDF of this talk online (soon) on my website:



Koopman eigenfunctions



Eigenfunctions for linear dynamics (saddle)
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ż(t) = Az(t), z(0) = z0
z(t) = exp (At) z0

Given left eigenvector at λ ∈ R :

v∗A = λv∗, v∗ exp(At) = eλtv∗

Functions
h(z) = v∗z

are eigenfunctions at eσt

h(z) = (v∗z)

Kt h(z) = v∗eAtz = eλt v∗z︸︷︷︸
h(z)

h(z) = (v∗1 z)

h(z) = (v∗2 z)

Structure of level sets stays constant in time. Values grow/decay according to eigenvalues.



Eigenfunctions for linear dynamics (focus)
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ż(t) = Az(t), z(0) = z0
z(t) = exp (At) z0

Given left e.-vectors v+, v− = v at σ ± iω :

v∗±A = λv∗±, v∗± exp(At) = eσt±iωtv∗

Functions

h(z) = (v∗z)(v∗z)

are eigenfunctions at eσt

h(z) = (v∗z)(v∗z) = |v∗z|2

Kt h(z) = (v∗eAtz)(v∗eAtz) = eσt (v∗z)(v∗z)︸ ︷︷ ︸
h(z)

h(z) = (v∗z)(v∗z)

h(z) = ∠(v∗z)

Level sets correspond to a Lyapunov function |v∗z|2 and isochrons ∠(v∗z).



How to calculate eigenfunctions
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Trajectory averages zn+1 = Φ(zn) project any observable onto an
eigenfunction:

hω(z0) = lim
N→∞

1
N

N−1∑
n=0

λn︸︷︷︸
E-value.

[Kn h](z0)︷︸︸︷
h(zn)

Ergodic average – λ = 0 – invariant functions
Harmonic average – λ = eiω – (quasi)periodic functions

Recipe for eigenfunctions

1. Seed a grid of initial conditions zk .
2. Simulate (long) trajectories zk  zk(t) .
3. Choose an observable and a frequency ω.
4. Compute the harmonic average and visualize zk 7→ hω(zk).

(If you choose a non-eigenvalue eiω you’ll get hω ≡ 0.)



Eigenfunctions for nonlinear dynamics
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Ergodic Average (double-well oscillator)
Ergodic averages of observables are
conserved quantities.
Level sets of ergodic averages are
invariant sets.

Harmonic Average (van der Pol oscillator)
Angle of harmonic average of h(z) = z
at frequency of limit cycle.
Level curves are isochrons.



Active Research Topics

spectral theory for transient (non-steady-state) dynamical systems
global stability and global linearization based on Koopman eigenfunctions
control and system identification based on Koopman spectral analysis
numerical methods for approximations and analysis of Koopman operator
investigations into the spectral measure and non-atomic Koopman spectrum
rigorous extensions of the Koopman theory for PDEs and SPDEs
Koopman theory in reproducing kernel Hilbert spaces

IPAM Operator Theoretic Methods in Dynamic Data Analysis and Control, Feb 2019, (link with
videos)
Speakers: Nelida Črnjarić-Žic (University of Rijeka) Zlatko Drmač (University of Zagreb) Maria Fonoberova (AIMdyn) Gary Froyland (University of New South Wales) Dimitris

Giannakis (New York University, Courant Institute of Mathematical Sciences) Didier Henrion (Centre National de la Recherche Scientifique (CNRS), Laboratoire d’Analyse et

d’Architecture des Systemes (LAAS)) Maria Infusino (Universität Konstanz) Oliver Junge (Technical University of Munich) Milan Korda (Centre National de la Recherche

Scientifique (CNRS)) J. Nathan Kutz (University of Washington, Applied Mathematics) Jean Lasserre (Université de Toulouse III (Paul Sabatier), LAAS-CNRS) Yuri Latushkin

(University of Missouri-Columbia) Senka Maćešić (University of Rijeka) Krithika Manohar (California Institute of Technology, Computing and Mathematical Sciences) Alexandre

Mauroy (Université de Namur) Igor Mezic (University of California, Santa Barbara (UCSB), Mechanical Engineering) Ryan Mohr (University of California, Santa Barbara (UCSB))

Nader Motee (Lehigh University, Mechanical Engineering and Mechanics) Hiroya Nakao (Tokyo Institute of Technology) Frank Noe (Freie Universität Berlin) Mihai Putinar

(University of California, Santa Barbara (UCSB), Mathematics) Peter Schmid (Imperial College, Mathematics) Amit Surana (United Technologies Research Center) Umesh Vaidya

(Iowa State University, Mechanical Engineering) Irène Waldspurger (Université de Paris IX (Paris-Dauphine)) Tillmann Weisser (Los Alamos National Laboratory) Enoch Yeung

(University of California, Santa Barbara (UCSB))
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http://www.ipam.ucla.edu/programs/workshops/operator-theoretic-methods-in-dynamic-data-analysis-and-control/?tab=schedule
http://www.ipam.ucla.edu/programs/workshops/operator-theoretic-methods-in-dynamic-data-analysis-and-control/?tab=schedule


Koopman modes



Linear PDEs: Normal mode analysis
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States: Simulated 16 linear
oscillators
Observables: Displacement
between them (polynomial
interpolation)
Observables are indexed by x –
there is a continuum of them.

Interpretation: discretized wave equation.
Normal modes: x−spatial profiles oscillating at isolated
frequencies (standing waves).
Modes do not depend on state representation (could
have used spectral instead of FD solver...)



Many observables through lens of 1 eigenfunction
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If f ∈ span(eigenfunctions) we can decompose it
into eigenfunctions.

f(z) =
∑

k

mk︸︷︷︸
Coefficients

E-fun.︷ ︸︸ ︷
hk(z) (Observable)

Kt f(z) =
∑

k

mk︸︷︷︸
Coefficients

E-val.︷︸︸︷
λt

k hk(z) (Evolution)

Now, consider many observables fx(z) for x ∈ S

Kt fx(z) =
∑

k

mk(x)︸ ︷︷ ︸
Koopman mode

λt
khk(z)

Koopman mode mk(x)

Demonstrates importance of eigenvalue λk across
a measurements indexed by x.

Normal mode analysis

model-dependent
analytic
works for select (non)linear
systems

Koopman mode analysis

model-free (data-driven)
computational
works for all (non)linear
systems (they are after all
justK )



Koopman modes for linear vibrations
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Based on a single trajectory of dynamics
Eigenvalues match the linear analysis
Modes correctly capture the expected standing waves
. . . but don’t they look a bit funny at ends?
Different trajectory (initial condition) could excite different
modes

Computation (Dynamic Mode Decomposition)

Simulation data⇒ SVD⇒ EIG⇒ done.
. . . (much) more on this in the coming parts.
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Koopman mode analysis extends normal modes
to nonlinear dynamics.

Spectral analysis of nonlinear flows 9
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Figure 2. (a) The empirical Ritz values λj . The value corresponding to the first Koopman
mode is shown with the blue symbol. (b) The magnitudes of the Koopman modes (except the
first one) at each frequency. In both figures, the colours vary smoothly from red to white,
depending on the magnitude of the corresponding mode.

pair (CVP), characteristic of the jet trajectory, is visible in the time-averaged mean
flow (figure 1b). Similarly visible in the mean, the horse-shoe vortices wrap around the
column of jet very close to the wall and, further downstream, lead to the appearance
of the quasi-steady wall-vortex system as shown by the distortion of the velocity
isocontour in figure 1(a, b). These essentially streamwise-oriented vortices are subject
to low-frequency oscillations of the wall-vortex system originating in a shedding of
the separation zone just downstream of the jet orifice, and induce a movement of
the whole jet body. The steady structures were also identified in the steady nonlinear
Navier–Stokes solution computed numerically by Bagheri et al. (2009b).

As found in Bagheri et al. (2009b), two distinct self-sustained oscillations could
be detected from the DNS. A high-frequency shedding of the shear-layer vortices
and a very low frequency shedding of the wall vortices. Figure 1(c) shows the time
signal of the streamwise velocity u1(x1

P , t) from a probe located just downstream
of the jet orifice and close the wall, x1

P =(x, y, z) = (10.7, 1, 0). In figure 1(e) its
corresponding power spectrum shows the frequency content û1(ω) of u1(t). The peak
frequency corresponds to a vortex shedding of wake vortices with the Strouhal number
St ≡ f D/Vjet = 0.0174.

In figure 1(d, f ), a second probe located a few jet diameters along the jet trajectory
x2

P = (12, 6, 2), shows a second oscillation that can be identified with the shedding of
the shear-layer vortices. The peak frequency oscillates with St = 0.141 which is nearly
one order of magnitude larger than the low-frequency mode. Note that the peak
frequencies of the power spectra vary slightly depending on the location of the probe.

4.1. Koopman modes and frequencies

In this section we compute the Koopman modes and show that they directly allow
an identification of the various shedding frequencies. The empirical Ritz values
λj and the empirical vectors vj of a sequence of flow fields {u0, u1, . . . , um−1} =
{u(t =200), u(t = 202), . . . , u(t = 700)} with m =251 are computed using the
algorithm described earlier. Thus, the transient time (t < 200) is not sampled and
only the asymptotic motion in phase space is considered.

Figure 2(a) shows that nearly all the Ritz values are on the unit circle |λj | =1
indicating that the sample points ui lie on or near an attracting set. The Koopman
eigenvalue corresponding to the first Koopman mode is the time-averaged flow and

10 C. W. Rowley, I. Mezić, S. Bagheri, P. Schlatter and D. S. Henningson

(a) (b)

Figure 3. Positive (red) and negative (blue) contour levels of the streamwise velocity
components of two Koopman modes. The wall is shown in grey. (a) Mode 2, with ‖v2‖ = 400
and St2 = 0.141. (b) Mode 6, with ‖v6‖ = 218 and St6 = 0.0175.

is depicted with blue symbol in figure 2(a). This mode, shown in figure 1(b), captures
the steady flow structures as discussed previously. In figure 2(a), the other (unsteady)
Ritz values vary smoothly in colour from red to white, depending on the magnitude
of the corresponding Koopman mode. The magnitudes defined by the global energy
norm ‖vj ‖, and are shown in figure 2(b) with the same colouring as the spectrum. In
figure 2(b) each mode is displayed with a vertical line scaled with its magnitude at
its corresponding frequency ωj = Im{log(λj )}/"t (with "t =2 in our case). Only the
ωj ! 0 are shown, since the eigenvalues come in complex conjugate pairs. Ordering
the modes with respect to their magnitude, the first (2–3) and second (4–5) pair of
modes oscillate with St2 = 0.141 and St4 = 0.136 respectively, whereas the third pair
of modes (6–7) oscillate with St6 = 0.017. All linear combinations of the frequencies
excite higher modes, for instance, the nonlinear interaction of the first and third pair
results in the fourth pair, i.e. St8 = 0.157 and so on.

In figures 1(e) and 1(f ) the power spectra of the two DNS time signals (black lines)
are compared to the frequencies obtained directly from the Ritz eigenvalues (red
vertical lines). The shedding frequencies and a number of higher harmonics are in
very good agreement with the frequencies of the Koopman modes. In particular, the
dominant Koopman eigenvalues match the frequencies for the wall mode (St = 0.017)
and the shear-layer mode (St = 0.14). Note that the probe signals are local measures
of the frequencies at one spatial point, whereas the Koopman eigenvalues correspond
to global modes in the flow with time-periodic motion.

The streamwise velocity component u of Koopman modes 2 and 6 are shown
in figure 3. Each mode represents a flow structure that oscillates with one single
frequency, and the superposition of several of these modes results in the quasi-
periodic global system. The high-frequency mode 2 (figure 3a) can be associated with
the shear layer vortices; along the jet trajectory there is first a formation of ring-like
vortices that eventually dissolve into smaller scales due to viscous dissipation. Also
visible are upright vortices: on the leeward side of the jet, there is a significant
structure extending towards the wall. This indicates that the shear-layer vortices and
the upright vortices are coupled and oscillate with the same frequency. The spatial
structures of modes 4 and 8 are very similar to those of mode 2, as one expects, since
the frequencies are very close.

On the other hand, the low-frequency mode 6 shown in figure 3(b) features large-
scale positive and negative streamwise velocity near the wall, which can be associated
with shedding of the wall vortices. However, this mode also has structures along
the jet trajectory further away from the wall. This indicates that the shedding of
wall vortices is coupled to the jet body, i.e. the low frequency can be detected nearly
anywhere in the vicinity of the jet since the whole jet is oscillating with that frequency.
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Where to start reading (a non-exhaustive list)
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Papers: Books:

Upcoming books:

I. Mezić on spectral analysis of
dynamical systems
S. Brunton et al. on data-driven methods
in dynamics



In a nutshell...

Koopman operator:
exact linear representation of (nonlinear) dynamics
Koopman eigenfunctions:
generalize Lyapunov functions, isochrons,. . .
Koopman modes:
in spirit, analogous to normal modes for linear PDEs
data-driven (model-free) calculation enabled by (a family of)
Dynamic Mode Decomposition (DMD) algorithm(s) (see
J. N. Kutz’s talk)
can be applied to reduced-order modeling, global linearization,
system ID, sensitivity, control... (see M. Hemati’s talk)

22 / 22


	History and Present
	Introduction
	Koopman eigenfunctions
	Koopman modes

	13.Plus: 
	13.Reset: 
	13.Minus: 
	13.EndRight: 
	13.StepRight: 
	13.PlayPauseRight: 
	13.PlayRight: 
	13.PauseRight: 
	13.PlayPauseLeft: 
	13.PlayLeft: 
	13.PauseLeft: 
	13.StepLeft: 
	13.EndLeft: 
	anm13: 
	13.50: 
	13.49: 
	13.48: 
	13.47: 
	13.46: 
	13.45: 
	13.44: 
	13.43: 
	13.42: 
	13.41: 
	13.40: 
	13.39: 
	13.38: 
	13.37: 
	13.36: 
	13.35: 
	13.34: 
	13.33: 
	13.32: 
	13.31: 
	13.30: 
	13.29: 
	13.28: 
	13.27: 
	13.26: 
	13.25: 
	13.24: 
	13.23: 
	13.22: 
	13.21: 
	13.20: 
	13.19: 
	13.18: 
	13.17: 
	13.16: 
	13.15: 
	13.14: 
	13.13: 
	13.12: 
	13.11: 
	13.10: 
	13.9: 
	13.8: 
	13.7: 
	13.6: 
	13.5: 
	13.4: 
	13.3: 
	13.2: 
	13.1: 
	13.0: 
	12.Plus: 
	12.Reset: 
	12.Minus: 
	12.EndRight: 
	12.StepRight: 
	12.PlayPauseRight: 
	12.PlayRight: 
	12.PauseRight: 
	12.PlayPauseLeft: 
	12.PlayLeft: 
	12.PauseLeft: 
	12.StepLeft: 
	12.EndLeft: 
	anm12: 
	12.10: 
	12.9: 
	12.8: 
	12.7: 
	12.6: 
	12.5: 
	12.4: 
	12.3: 
	12.2: 
	12.1: 
	12.0: 
	11.Plus: 
	11.Reset: 
	11.Minus: 
	11.EndRight: 
	11.StepRight: 
	11.PlayPauseRight: 
	11.PlayRight: 
	11.PauseRight: 
	11.PlayPauseLeft: 
	11.PlayLeft: 
	11.PauseLeft: 
	11.StepLeft: 
	11.EndLeft: 
	anm11: 
	11.10: 
	11.9: 
	11.8: 
	11.7: 
	11.6: 
	11.5: 
	11.4: 
	11.3: 
	11.2: 
	11.1: 
	11.0: 
	10.Plus: 
	10.Reset: 
	10.Minus: 
	10.EndRight: 
	10.StepRight: 
	10.PlayPauseRight: 
	10.PlayRight: 
	10.PauseRight: 
	10.PlayPauseLeft: 
	10.PlayLeft: 
	10.PauseLeft: 
	10.StepLeft: 
	10.EndLeft: 
	anm10: 
	10.10: 
	10.9: 
	10.8: 
	10.7: 
	10.6: 
	10.5: 
	10.4: 
	10.3: 
	10.2: 
	10.1: 
	10.0: 
	9.Plus: 
	9.Reset: 
	9.Minus: 
	9.EndRight: 
	9.StepRight: 
	9.PlayPauseRight: 
	9.PlayRight: 
	9.PauseRight: 
	9.PlayPauseLeft: 
	9.PlayLeft: 
	9.PauseLeft: 
	9.StepLeft: 
	9.EndLeft: 
	anm9: 
	9.30: 
	9.29: 
	9.28: 
	9.27: 
	9.26: 
	9.25: 
	9.24: 
	9.23: 
	9.22: 
	9.21: 
	9.20: 
	9.19: 
	9.18: 
	9.17: 
	9.16: 
	9.15: 
	9.14: 
	9.13: 
	9.12: 
	9.11: 
	9.10: 
	9.9: 
	9.8: 
	9.7: 
	9.6: 
	9.5: 
	9.4: 
	9.3: 
	9.2: 
	9.1: 
	9.0: 
	8.Plus: 
	8.Reset: 
	8.Minus: 
	8.EndRight: 
	8.StepRight: 
	8.PlayPauseRight: 
	8.PlayRight: 
	8.PauseRight: 
	8.PlayPauseLeft: 
	8.PlayLeft: 
	8.PauseLeft: 
	8.StepLeft: 
	8.EndLeft: 
	anm8: 
	8.30: 
	8.29: 
	8.28: 
	8.27: 
	8.26: 
	8.25: 
	8.24: 
	8.23: 
	8.22: 
	8.21: 
	8.20: 
	8.19: 
	8.18: 
	8.17: 
	8.16: 
	8.15: 
	8.14: 
	8.13: 
	8.12: 
	8.11: 
	8.10: 
	8.9: 
	8.8: 
	8.7: 
	8.6: 
	8.5: 
	8.4: 
	8.3: 
	8.2: 
	8.1: 
	8.0: 
	7.Plus: 
	7.Reset: 
	7.Minus: 
	7.EndRight: 
	7.StepRight: 
	7.PlayPauseRight: 
	7.PlayRight: 
	7.PauseRight: 
	7.PlayPauseLeft: 
	7.PlayLeft: 
	7.PauseLeft: 
	7.StepLeft: 
	7.EndLeft: 
	anm7: 
	7.10: 
	7.9: 
	7.8: 
	7.7: 
	7.6: 
	7.5: 
	7.4: 
	7.3: 
	7.2: 
	7.1: 
	7.0: 
	6.Plus: 
	6.Reset: 
	6.Minus: 
	6.EndRight: 
	6.StepRight: 
	6.PlayPauseRight: 
	6.PlayRight: 
	6.PauseRight: 
	6.PlayPauseLeft: 
	6.PlayLeft: 
	6.PauseLeft: 
	6.StepLeft: 
	6.EndLeft: 
	anm6: 
	6.10: 
	6.9: 
	6.8: 
	6.7: 
	6.6: 
	6.5: 
	6.4: 
	6.3: 
	6.2: 
	6.1: 
	6.0: 
	5.Plus: 
	5.Reset: 
	5.Minus: 
	5.EndRight: 
	5.StepRight: 
	5.PlayPauseRight: 
	5.PlayRight: 
	5.PauseRight: 
	5.PlayPauseLeft: 
	5.PlayLeft: 
	5.PauseLeft: 
	5.StepLeft: 
	5.EndLeft: 
	anm5: 
	5.10: 
	5.9: 
	5.8: 
	5.7: 
	5.6: 
	5.5: 
	5.4: 
	5.3: 
	5.2: 
	5.1: 
	5.0: 
	4.Plus: 
	4.Reset: 
	4.Minus: 
	4.EndRight: 
	4.StepRight: 
	4.PlayPauseRight: 
	4.PlayRight: 
	4.PauseRight: 
	4.PlayPauseLeft: 
	4.PlayLeft: 
	4.PauseLeft: 
	4.StepLeft: 
	4.EndLeft: 
	anm4: 
	4.10: 
	4.9: 
	4.8: 
	4.7: 
	4.6: 
	4.5: 
	4.4: 
	4.3: 
	4.2: 
	4.1: 
	4.0: 
	3.Plus: 
	3.Reset: 
	3.Minus: 
	3.EndRight: 
	3.StepRight: 
	3.PlayPauseRight: 
	3.PlayRight: 
	3.PauseRight: 
	3.PlayPauseLeft: 
	3.PlayLeft: 
	3.PauseLeft: 
	3.StepLeft: 
	3.EndLeft: 
	anm3: 
	3.25: 
	3.24: 
	3.23: 
	3.22: 
	3.21: 
	3.20: 
	3.19: 
	3.18: 
	3.17: 
	3.16: 
	3.15: 
	3.14: 
	3.13: 
	3.12: 
	3.11: 
	3.10: 
	3.9: 
	3.8: 
	3.7: 
	3.6: 
	3.5: 
	3.4: 
	3.3: 
	3.2: 
	3.1: 
	3.0: 
	2.Plus: 
	2.Reset: 
	2.Minus: 
	2.EndRight: 
	2.StepRight: 
	2.PlayPauseRight: 
	2.PlayRight: 
	2.PauseRight: 
	2.PlayPauseLeft: 
	2.PlayLeft: 
	2.PauseLeft: 
	2.StepLeft: 
	2.EndLeft: 
	anm2: 
	2.25: 
	2.24: 
	2.23: 
	2.22: 
	2.21: 
	2.20: 
	2.19: 
	2.18: 
	2.17: 
	2.16: 
	2.15: 
	2.14: 
	2.13: 
	2.12: 
	2.11: 
	2.10: 
	2.9: 
	2.8: 
	2.7: 
	2.6: 
	2.5: 
	2.4: 
	2.3: 
	2.2: 
	2.1: 
	2.0: 
	1.Plus: 
	1.Reset: 
	1.Minus: 
	1.EndRight: 
	1.StepRight: 
	1.PlayPauseRight: 
	1.PlayRight: 
	1.PauseRight: 
	1.PlayPauseLeft: 
	1.PlayLeft: 
	1.PauseLeft: 
	1.StepLeft: 
	1.EndLeft: 
	anm1: 
	1.25: 
	1.24: 
	1.23: 
	1.22: 
	1.21: 
	1.20: 
	1.19: 
	1.18: 
	1.17: 
	1.16: 
	1.15: 
	1.14: 
	1.13: 
	1.12: 
	1.11: 
	1.10: 
	1.9: 
	1.8: 
	1.7: 
	1.6: 
	1.5: 
	1.4: 
	1.3: 
	1.2: 
	1.1: 
	1.0: 
	0.Plus: 
	0.Reset: 
	0.Minus: 
	0.EndRight: 
	0.StepRight: 
	0.PlayPauseRight: 
	0.PlayRight: 
	0.PauseRight: 
	0.PlayPauseLeft: 
	0.PlayLeft: 
	0.PauseLeft: 
	0.StepLeft: 
	0.EndLeft: 
	anm0: 
	0.25: 
	0.24: 
	0.23: 
	0.22: 
	0.21: 
	0.20: 
	0.19: 
	0.18: 
	0.17: 
	0.16: 
	0.15: 
	0.14: 
	0.13: 
	0.12: 
	0.11: 
	0.10: 
	0.9: 
	0.8: 
	0.7: 
	0.6: 
	0.5: 
	0.4: 
	0.3: 
	0.2: 
	0.1: 
	0.0: 


