

& Industry

The Deffuant Model of Opinion Dynamics

Susan Fennell Dept. of Mathematics and Statistics, MACSI, University of Limerick. susan.fennell@ul.ie SIAM Conference on Applications of Dynamical Systems May 21, 2019

- How does social influence affect opinion formation?
- Will the group form a consensus or become polarized?
- Model opinion formation at an individual level to try to describe behaviour on a global level.
- Many models of opinion dynamics
 - Continuous/Discrete opinions.
 - Large groups/round table discussion.

Nodes *i* and *j* interact if $|x_i - x_j| < \epsilon = 1/2$

$$x_k o x_k + \mu \cdot (x_l - x_k)$$
 $\mu = \frac{1}{2}$

6

- We can simulate the evolution of the opinions on a network with *N* nodes.
- Each node *i* has an initial opinion x_i from a uniform distribution.
- At each time step choose two nodes *i* and *j* at random.
- If $|x_i x_j| < \epsilon$ the two opinions get updated.

$$x_i \rightarrow x_i + \mu \cdot (x_j - x_i)$$

 $x_j \rightarrow x_j + \mu \cdot (x_i - x_j)$

• Otherwise both opinions remain the same.

Clusters of individuals with similar opinions will form.

We simulate the dynamics until

- Clusters are separated by distance ϵ .
- Opinion difference within clusters is < 0.02.

Simulations on networks - complete graph

Multiplier (m)

Simulations on networks - Cycle

Multiplier (m)

Simulations on networks - Erdös-Rényi graph

Mean field approximation

$$x_1 \rightarrow x_1 + \mu \cdot (x_2 - x_1)$$

 P(x, t) = probability that an individual holds opinion x at time t.

$$\begin{aligned} \frac{\partial}{\partial t}P(x,t) &= \int \int_{|x_1-x_2|<\epsilon} P(x_1,t)P(x_2,t)\delta\left(x_1+\mu(x_2-x_1)-x\right)dx_1dx_2\\ &- \int_{|x_1-x|<\epsilon} P(x_1,t)P(x,t)dx_1 \end{aligned}$$

• Ben-Naim et al. 2003

Comparison of mean field and simulations - complete graph

Comparison of mean field and simulations - complete graph

Number of clusters

1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		
0.95 0.9 0.85 0.8 0.75 0.7	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		14
	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		
	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		
	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		12
	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		
	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		
0.65	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		10
c 0.6	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		
<u>0.55</u>	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		0
g 0.5	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		8
Φ 0.45 0.4	1	1	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	1	1		
	1	1	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	1	1	_	6
0.35	1	4	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	1		0
0.3	1	1	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	1	1		
0.25	2	2	2	4	4	4	4	4	4	4	4	4	4	4	4	4	2	2	2	-	4
0.2	3	3	3	5	5	5	5	5	5	5	5	5	5	5	5	5	3	3	3		
0.15	3	3	3	5	5	5	5	5	5	5	5	5	5	5	5	5	3	3	3		
0.1	5	5	5	5	7	9	9	9	9	9	9	9	9	9	7	5	5	5	5	-	2
0.05	9	9	9	9	11	13	13	13	13		13	13	13	13	11	9	9	9	9		
	5	~	5	٩.	.6	<u>с</u>	5	N	.6	5	.6	6	.6	1	.6	\$	-6	0	-6		

Effect of $\boldsymbol{\mu}$

Effect of $\boldsymbol{\mu}$

Comparison of mean field with simulations

Multiplier (m)

Complete network

mu

mu

mu

- Effect of degree distribution, modularity, initial conditions.
- Probability distributions $P_k(x, t)$ for nodes of degree k.
- What happens in $\mu \rightarrow 0$ limit?
- Does noise reduce the number of clusters that form?

E. Ben-Naim, P.L. Krapivsky, and S. Redner.

Bifurcations and patterns in compromise processes.

Physica D: Nonlinear Phenomena, 183(3-4):190–204, 2003.

Guillaume Deffuant, David Neau, Frederic Amblard, and Gérard Weisbuch. Mixing beliefs among interacting agents.

Advances in Complex Systems, 03(01n04):87-98, 2000.

X Flora Meng, Robert A Van Gorder, and Mason A Porter. **Opinion formation and distribution in a bounded-confidence model on various networks.**

Physical Review E, 97(2):022312, 2018.