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Motivation & background

Different results 
based on the same 
Florida poll:

Raw poll  
responses Forecast

Public 
poll data

Goal: Better understand the election forecasting process

{Tables from The Upshot, NY Times}

Fundamentals
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Motivation & background

Elections are contested at the state 
level, but errors are correlated 

Demographic/regional error: 

• Due to polls being off in states with 
similar demographics 

• 538 accounts for this by randomly 
varying the vote among groups 
with common features

{A user’s guide to FiveThirtyEight’s 2016 general election forecast; Right table from FiveThirtyEight; Top table from Upshot, NY Times}

Goal: Account for directed relationships between states
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Example related previous work
Example statistical or economic approaches to forecasting: 

Klarner (2008) 
Hummel, Rothschild (2014) 
Abramowitz (2016) 
Alexander, Ellingson (2019) 

Example dynamical systems approaches to election dynamics: 

Fernàndez-Gracia, Suchecki, et al. (2014) 
Galam (2017) 
Braha, de Aguiar (2017) 

Polls-based Bayesian model (2016)

local majority rule model
voter model (results data)

voter model (results data)

Fundamentals-based
Fundamentals-based

Fundamentals- & polls-based
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Goals & outline

Approach: Compartmental models of infection fit to polling data

Outline:
Model 2012-2016 Uncertainty

{US images from Wikipedia; Graph from LA Times}

Nevada

Ohio
Pennsylvania

2018
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Goals: 
• Develop a model that accounts for directed interactions between states 
• Shed light on the forecasting process & raise questions 
• Help suggest improved ways of polling and forecasting elections



Modeling approach
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Our approach: Reframe the SIS compartmental model for elections 
➡ 2 contagions = Democrat & Republican voting inclinations 
➡ Susceptible = Undecided voters 
➡ Parameters fit to polling data for each election year

Assuming uniform mixing:

IjR IjDSj

SIS model:
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Our model
where

Si
= expected fraction of undecided (or non) voters in module i

IiR = expected fraction of Republican voters in module i

IiD = 1� Si � IiR = expected fraction of Democrat voters in module i

N = 249, 485, 228 = total number of voting-age individuals in the US based on the Federal Register

N i
= number of voting-age individuals in each module
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Incorporating public polling data

• Parameters are fit to polls in the year leading up to an election 
• Polls are averaged by month 
• No adjustments to polls of likely voters, registered voters, or all adults 
• No adjustments for poll accuracy, recency, or partisanship 
• No adjustments for convention bounce, third parties, or undecided voters
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• Actual results: Romney 206, Obama 332 
• Accuracy: 100% 
• Model agrees with 538

{US image from https://www.forbes.com/sites/quora/2012/11/07/how-accurate-were-nate-silvers-predictions-for-the-2012-
presidential-election/#65aca396fe3c}

{538}

Forecasting the 2012 presidential race

Most influential states: 
• Florida 
• Pennsylvania 
• Ohio

2012 Presidential Election
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https://www.forbes.com/sites/quora/2012/11/07/how-accurate-were-nate-silvers-predictions-for-the-2012-presidential-election/#65aca396fe3c


Forecasting the 2016 presidential race

• Model forecast agrees with 538 with the exception of OH 
• FL, MI, NC, OH, PA, and WI are predicted incorrectly 
• CO, IA, MN, NV, NH, and VA are predicted correctly

{538}

2016 Presidential Election
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Margin lead by party (percentage points)

Model (Rep. win)!
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Results (Rep. win)!
Results (Dem. win)
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Accuracy in past elections

Our simple compartmental model approach often agrees with popular 
forecasters and gives similar accuracy

DRAFT

• While generally not realistic, we assume voters mix uni-201

formly (e.g., everyone has the same influence on everyone202

else), aside from the state structure (which is analogous203

to a patch structure in epidemiology); accounting for net-204

work structure (in addition to coe�cients for the strengths205

of interactions between states) may improve forecasts (51–206

53)).207

• We combine all sources of opinion adoption into time-208

independent transmission parameters —ij
R and —ij

D .209

• If undecided voters remain at the end of our simulation,210

we assume that they vote for minor-party candidates or do211

not vote. By contrast, Hu�ngton Post (54) incorporates212

undecided voters into their measurements of uncertainty.213

• Most importantly, we assume that all polls are equally214

accurate. Unlike FiveThirtyEight.com (2), we do not215

weight polls more strongly based on recency or make any216

distinction between partisan and non-partisan polls (or217

polls of likely voters, registered voters, or all adults).218

Despite these simplifications, our model surprisingly performs219

as well as popular pollsters, as we illustrate in the next section.220
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Election Simulations. We now use our model [3–5] to simulate227

past races for governor, Senate, and president. Because real-228

istic forecasts should incorporate uncertainty, we follow this229

exploration of past races with a short study of the impact230

of noise on our 2016 presidential forecast. To do this, we231

introduce a stochastic di�erential equation (SDE) version of232

our model; and we then use our SDE model to forecast the233

gubernatorial and senatorial midterm races on 6 Nov. 2018.234

2012 and 2016 Election Forecasts. By fitting our model parame-235

ters to polling data for senatorial, gubernatorial, and presi-236

dential races in 2012 and 2016 without incorporating the final237

election results, we can simulate forecasts for these elections238

as if we made them on the eve of the respective election days.239

In Fig. 2, we summarize our forecast results for these races.240

It is insightful to compare our forecasts to the final forecasts241

from popular pollsters. As we show in Table 1, our model has242

a similar success rate at predicting (“calling”) party outcomes243

at the state level as FiveThirtyEight (9) and Sabato’s Crystal244

Ball (13). Our mean accuracy for presidential elections in245

2012 and 2016 is 94.1%, while FiveThirtyEight.com achieved246

a mean success rate of 95.1% and Sabato’s Crystal Ball was247

slightly behind at 93.1%. To our knowledge, gubernatorial248

forecasts and 2012 senatorial forecasts are not available from249

FiveThirtyEight.com, so we compare our performance for250

these races with Sabato’s Crystal Ball. Across the states for251

which forecasts are available from our model (see Table S1),252

we forecast 89.1% of 64 state Senate races correctly; Sabato253

achieved a success rate of 93.8%. Similarly, our forecasts have254

a mean accuracy of 90.5% for the 21 gubernatorial that races255

we forecast in 2012 and 2016, for which Sabato’s predictions256

averaged 81.0% success.257

Figure 2 and Table 1 highlight two goals of election forecast-258

ing: (1) forecasting the vote share by state (e.g., the percents259

of the state vote that are received by Democrat and Repub-260

Table 1. Comparison of success rates for our model [3–5] and two
popular sources. (For FiveThirtyEight (9), we use the 2016 polls-only
forecast.) We report success rates for governor and Senate elections
based only on the states for which forecasts are available from our
model (see Table S4).

Election FiveThirtyEight.com (9) Our model Sabato (13)

2016 President 90.2% 88.2% 90.2%
2016 Senate 90.9% 87.9% 93.9%
2016 Governor NA 91.7% 83.3%
2012 President 100% 100% 96.1%
2012 Senate NA 90.3% 93.5%
2012 Governor NA 88.9% 77.8%

lican candidates), and (2) calling the winning party by state 261

(i.e., which party’s candidate wins the election in a given state). 262

Many popular qualitative pollsters, including the Cook Politi- 263

cal Report (15) and Sabato’s Crystal Ball (13), focus on the 264

second goal, whereas our model and FiveThirtyEight.com’s 265

algorithm (9) pursue both goals. Media coverage and public 266

attention are skewed toward the second goal, yet the first aim 267

represents a more challenging problem (with finer details). 268

Accounting for and Interpreting Uncertainty. Election forecasting
involves not only calling a race for a specific party and fore-
casting vote shares, but also specifying the likelihood of dif-
ferent outcomes. This raises a third goal of pollsters, (3)
quantifying uncertainty (e.g., estimating the chance of specific
candidate winning an election), that is easy for forecast read-
ers to overlook. Quantifying and interpreting uncertainty is
important, and we suggest that this is one of the key places
where mathematical techniques can contribute to election fore-
casting. We explore randomness by generalizing our model
[3–5] to a system of SDEs:
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where we now consider Ii
D, Ii

R, and Si to be stochastic processes 269

and let W i
D, W i

R, and W i
S be Wiener processes. We select the 270

noise strength ‡ to roughly match our 80% confidence intervals 271

to those of FiveThirtyEight.com (57). 272

To shed light on how uncertainty impacts both election 273

results and forecasts, we explore a few approaches for including 274

randomness in the form of additive white noise. In partic- 275

ular, FiveThirtyEight (2) has highlighted several sources of 276

uncertainty, but for concreteness and simplicity, we focus on 277

accounting for errors based on shared demographics. Although 278

U.S. elections are decided at the level of states, polling errors 279

are correlated in regions with similar populations (2). Thus, if 280
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Despite these simplifications, our model surprisingly performs219

as well as popular pollsters, as we illustrate in the next section.220
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istic forecasts should incorporate uncertainty, we follow this229

exploration of past races with a short study of the impact230

of noise on our 2016 presidential forecast. To do this, we231

introduce a stochastic di�erential equation (SDE) version of232

our model; and we then use our SDE model to forecast the233

gubernatorial and senatorial midterm races on 6 Nov. 2018.234

2012 and 2016 Election Forecasts. By fitting our model parame-235

ters to polling data for senatorial, gubernatorial, and presi-236

dential races in 2012 and 2016 without incorporating the final237

election results, we can simulate forecasts for these elections238

as if we made them on the eve of the respective election days.239

In Fig. 2, we summarize our forecast results for these races.240

It is insightful to compare our forecasts to the final forecasts241

from popular pollsters. As we show in Table 1, our model has242

a similar success rate at predicting (“calling”) party outcomes243

at the state level as FiveThirtyEight (9) and Sabato’s Crystal244

Ball (13). Our mean accuracy for presidential elections in245

2012 and 2016 is 94.1%, while FiveThirtyEight.com achieved246

a mean success rate of 95.1% and Sabato’s Crystal Ball was247

slightly behind at 93.1%. To our knowledge, gubernatorial248

forecasts and 2012 senatorial forecasts are not available from249

FiveThirtyEight.com, so we compare our performance for250

these races with Sabato’s Crystal Ball. Across the states for251

which forecasts are available from our model (see Table S1),252

we forecast 89.1% of 64 state Senate races correctly; Sabato253

achieved a success rate of 93.8%. Similarly, our forecasts have254

a mean accuracy of 90.5% for the 21 gubernatorial that races255

we forecast in 2012 and 2016, for which Sabato’s predictions256

averaged 81.0% success.257

Figure 2 and Table 1 highlight two goals of election forecast-258

ing: (1) forecasting the vote share by state (e.g., the percents259

of the state vote that are received by Democrat and Repub-260

Table 1. Comparison of success rates for our model [3–5] and two
popular sources. (For FiveThirtyEight (9), we use the 2016 polls-only
forecast.) We report success rates for governor and Senate elections
based only on the states for which forecasts are available from our
model (see Table S4).

Election FiveThirtyEight.com (9) Our model Sabato (13)

2016 President 90.2% 88.2% 90.2%
2016 Senate 90.9% 87.9% 93.9%
2016 Governor NA 91.7% 83.3%
2012 President 100% 100% 96.1%
2012 Senate NA 90.3% 93.5%
2012 Governor NA 88.9% 77.8%

lican candidates), and (2) calling the winning party by state 261

(i.e., which party’s candidate wins the election in a given state). 262

Many popular qualitative pollsters, including the Cook Politi- 263

cal Report (15) and Sabato’s Crystal Ball (13), focus on the 264

second goal, whereas our model and FiveThirtyEight.com’s 265

algorithm (9) pursue both goals. Media coverage and public 266

attention are skewed toward the second goal, yet the first aim 267

represents a more challenging problem (with finer details). 268

Accounting for and Interpreting Uncertainty. Election forecasting
involves not only calling a race for a specific party and fore-
casting vote shares, but also specifying the likelihood of dif-
ferent outcomes. This raises a third goal of pollsters, (3)
quantifying uncertainty (e.g., estimating the chance of specific
candidate winning an election), that is easy for forecast read-
ers to overlook. Quantifying and interpreting uncertainty is
important, and we suggest that this is one of the key places
where mathematical techniques can contribute to election fore-
casting. We explore randomness by generalizing our model
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Accounting for uncertainty
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Forecasting the 2018 governor races
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Math 2174 Extra Credit Project

Due by noon on Monday, April 8, by email

Table 1: Pollster performance for the 2018 governor and Senate races as measured by mean error in vote margin,
number of states missed or not called, and log-loss error, which describes how well uncertainty is captured. We
use final forecasts, and we note that lower numbers indicate better accuracy. The measurements are for the
races in Figs. ??B and ??B, and they do not include the states that we combined into the Safe Red and Safe
Blue superstates.
Forecaster Gov. margin error Gov. # states missed Gov. log-loss error Sen. margin error Sen. # states missed Sen. log-loss error
Our model 4.1 pts. 4 missed 0.590 4.6 pts. 3 missed 0.400
FiveThirtyEight.com 3.1 pts. 4 missed 0.548 3.7 pts. 3 missed 0.410
Sabato NA 1 missed, 1 not called 0.585 NA 1 missed 0.379
Cook NA 12 not called 0.670 NA 9 not called 0.553
Inside Elections NA 2 missed, 2 not called 0.619 NA 1 missed, 1 not called 0.415
RealClearPolitics.com NA 12 not called 0.647 NA 8 not called 0.071

This (optional) extra credit project consists of 2 parts. Part 1 has 6 steps; Part 2 has 4 steps. Each step is
worth 1 point, and your total score (a max of 10 points) will be added to your final grade as extra credit. Part 1
should be solved using Matlab (I suggest checking the intuition behind your solutions by hand as appropriate).
Part 2 can be solved by hand. Your solutions must be clearly presented and well-explained to receive full credit.
I have included a few suggested websites as resources on the last page. You are encouraged to email me or
come to o�ce hours if you have questions (if o�ce hours conflict with your class or work schedule, let me know).

To complete Part 1, please fill in the Matlab files part1.m and part1 distance.m. For Part 2, scanned images
of handwritten notes are fine; if you would like to learn LATEX, send me an email and I can provide you with a
template document for typing solutions. A complete project consists of 3 files:

1. part1.m
2. part1 distance.m
3. a pdf file titled part2 YourName.pdf providing your solution to Part 2

Please submit these files (or the subset of files pertaining to the exercises you choose to do) to me by email as
a zipped folder with your name in the title by April 8 at noon.

1 Linear algebra applied to networks

Take-away : In this class, you learn how to perform various algebraic operations with matrices and compute
their eigenvalues and eigenvectors. Part 1 illustrates a few ways these Math 2174 tools are being applied in the
very active and fairly new field of network science.

A network is a collection of points (called nodes) and lines (called edges) that connect di↵erent pairs of points
(see Fig. 1a). Examples of networks include the internet, Facebook friendship, Twitter followership, highways,
flight paths between airports, and connections between neurons in the brain. In the Facebook setting, nodes
can be used to denote di↵erent accounts; an edge between two nodes denotes friendship between those two
individuals. While friendship is not directed (if ↵ and � are Facebook friends, so are � and ↵), this is not the
case on Twitter: ↵ may follow �, but � might not follow ↵. We call Twitter followership a directed network ;
for directed networks, we add an arrow to each edge to denote the edge direction (see Fig. 1b–1c).
The connections between nodes in a network (or graph) are described using matrices. In particular, the
adjacency matrix A = (a

ij

) of a graph with n nodes is an n⇥n matrix of 00s and 10s that represent connections
between di↵erent nodes. We will assume in this project that nodes are not connected to themselves, so note
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Math 2174 Extra Credit Project

Due by noon on Monday, April 8, by email

Table 1: Pollster performance for the 2018 governor and Senate races as measured by mean error in vote margin,
number of states missed or not called, and log-loss error, which describes how well uncertainty is captured. We
use final forecasts, and we note that lower numbers indicate better accuracy. The measurements are for the
races in Figs. ??B and ??B, and they do not include the states that we combined into the Safe Red and Safe
Blue superstates.

Forecaster Sen. margin error Sen. # states missed Sen. log-loss error
Our model 4.6 pts. 3 missed 0.400
FiveThirtyEight.com 3.7 pts. 3 missed 0.410
Sabato NA 1 missed 0.379
Cook NA 9 not called 0.553
Inside Elections NA 1 missed, 1 not called 0.415
RealClearPolitics.com NA 8 not called 0.071

This (optional) extra credit project consists of 2 parts. Part 1 has 6 steps; Part 2 has 4 steps. Each step is
worth 1 point, and your total score (a max of 10 points) will be added to your final grade as extra credit. Part 1
should be solved using Matlab (I suggest checking the intuition behind your solutions by hand as appropriate).
Part 2 can be solved by hand. Your solutions must be clearly presented and well-explained to receive full credit.
I have included a few suggested websites as resources on the last page. You are encouraged to email me or
come to o�ce hours if you have questions (if o�ce hours conflict with your class or work schedule, let me know).

To complete Part 1, please fill in the Matlab files part1.m and part1 distance.m. For Part 2, scanned images
of handwritten notes are fine; if you would like to learn LATEX, send me an email and I can provide you with a
template document for typing solutions. A complete project consists of 3 files:

1. part1.m
2. part1 distance.m
3. a pdf file titled part2 YourName.pdf providing your solution to Part 2

Please submit these files (or the subset of files pertaining to the exercises you choose to do) to me by email as
a zipped folder with your name in the title by April 8 at noon.

1 Linear algebra applied to networks

Take-away : In this class, you learn how to perform various algebraic operations with matrices and compute
their eigenvalues and eigenvectors. Part 1 illustrates a few ways these Math 2174 tools are being applied in the
very active and fairly new field of network science.

A network is a collection of points (called nodes) and lines (called edges) that connect di↵erent pairs of points
(see Fig. 1a). Examples of networks include the internet, Facebook friendship, Twitter followership, highways,
flight paths between airports, and connections between neurons in the brain. In the Facebook setting, nodes
can be used to denote di↵erent accounts; an edge between two nodes denotes friendship between those two
individuals. While friendship is not directed (if ↵ and � are Facebook friends, so are � and ↵), this is not the
case on Twitter: ↵ may follow �, but � might not follow ↵. We call Twitter followership a directed network ;
for directed networks, we add an arrow to each edge to denote the edge direction (see Fig. 1b–1c).
The connections between nodes in a network (or graph) are described using matrices. In particular, the
adjacency matrix A = (a

ij

) of a graph with n nodes is an n⇥n matrix of 00s and 10s that represent connections
between di↵erent nodes. We will assume in this project that nodes are not connected to themselves, so note
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{A V—, DF Linder, MA Porter, GA Rempala, Submitted. arXiv 1811.01831}
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• Which states are most influential?  
• How do state relationships change in time? 
• How do other choices for correlated noise impact forecasts? 
• How do external forces impact voting dynamics?

Outlook:

Web:       go.osu.edu/volkening  
Email:     volkening.2@mbi.osu.edu 
Twitter:  @al_volkening  

http://go.osu.edu/volkening
mailto:volkening.2@mbi.osu.edu


Dynamics of Democracy
Influence of media on opinion dynamics in social networks 
Heather Brooks & Mason Porter 

“Very fine people on both sides” of Twitter: Analyzing the network structure of the online 
conversation about #Charlottesville 
Joseph Tien 

The effect of the convergence parameter in the Deffuant model of opinion dynamics 
Susan Fennell 

A network model of immigration: enclave formation vs. cultural integration 
Maria D’Orsogna, Tom Chao, & Yao-li Chuang 

Interdisciplinary inclusive communities of undergraduates doing social-justice inspired 
research 
Carlos Castillo-Chavez 

Quantifying gerrymandering using random dynamics 
Jonathan Mattingly & Gregory Herschlag 

A topological approach to detecting neighborhood segregation 
Michelle Feng 

Forecasting U.S. elections using compartmental models 
Alexandria Volkening, Daniel Linder, Mason Porter, & Grzegorz Rempala



Forecasting the 2012 governor & senate races

2012 Senatorial Elections
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Forecasting the 2016 senate & governor races

2016 Gubernatorial Elections
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Assessing the 2018 forecasts

Math 2174 Extra Credit Project

Due by noon on Monday, April 8, by email

Table 1: Pollster performance for the 2018 governor and Senate races as measured by mean error in vote margin,
number of states missed or not called, and log-loss error, which describes how well uncertainty is captured. We
use final forecasts, and we note that lower numbers indicate better accuracy. The measurements are for the
races in Figs. ??B and ??B, and they do not include the states that we combined into the Safe Red and Safe
Blue superstates.
Forecaster Gov. margin error Gov. # states missed Gov. log-loss error Sen. margin error Sen. # states missed Sen. log-loss error
Our model 4.1 pts. 4 missed 0.590 4.6 pts. 3 missed 0.400
FiveThirtyEight.com 3.1 pts. 4 missed 0.548 3.7 pts. 3 missed 0.410
Sabato NA 1 missed, 1 not called 0.585 NA 1 missed 0.379
Cook NA 12 not called 0.670 NA 9 not called 0.553
Inside Elections NA 2 missed, 2 not called 0.619 NA 1 missed, 1 not called 0.415
RealClearPolitics.com NA 12 not called 0.647 NA 8 not called 0.071

This (optional) extra credit project consists of 2 parts. Part 1 has 6 steps; Part 2 has 4 steps. Each step is
worth 1 point, and your total score (a max of 10 points) will be added to your final grade as extra credit. Part 1
should be solved using Matlab (I suggest checking the intuition behind your solutions by hand as appropriate).
Part 2 can be solved by hand. Your solutions must be clearly presented and well-explained to receive full credit.
I have included a few suggested websites as resources on the last page. You are encouraged to email me or
come to o�ce hours if you have questions (if o�ce hours conflict with your class or work schedule, let me know).

To complete Part 1, please fill in the Matlab files part1.m and part1 distance.m. For Part 2, scanned images
of handwritten notes are fine; if you would like to learn LATEX, send me an email and I can provide you with a
template document for typing solutions. A complete project consists of 3 files:

1. part1.m
2. part1 distance.m
3. a pdf file titled part2 YourName.pdf providing your solution to Part 2

Please submit these files (or the subset of files pertaining to the exercises you choose to do) to me by email as
a zipped folder with your name in the title by April 8 at noon.

1 Linear algebra applied to networks

Take-away : In this class, you learn how to perform various algebraic operations with matrices and compute
their eigenvalues and eigenvectors. Part 1 illustrates a few ways these Math 2174 tools are being applied in the
very active and fairly new field of network science.

A network is a collection of points (called nodes) and lines (called edges) that connect di↵erent pairs of points
(see Fig. 1a). Examples of networks include the internet, Facebook friendship, Twitter followership, highways,
flight paths between airports, and connections between neurons in the brain. In the Facebook setting, nodes
can be used to denote di↵erent accounts; an edge between two nodes denotes friendship between those two
individuals. While friendship is not directed (if ↵ and � are Facebook friends, so are � and ↵), this is not the
case on Twitter: ↵ may follow �, but � might not follow ↵. We call Twitter followership a directed network ;
for directed networks, we add an arrow to each edge to denote the edge direction (see Fig. 1b–1c).
The connections between nodes in a network (or graph) are described using matrices. In particular, the
adjacency matrix A = (a

ij

) of a graph with n nodes is an n⇥n matrix of 00s and 10s that represent connections
between di↵erent nodes. We will assume in this project that nodes are not connected to themselves, so note

Math 2174 Extra Credit Project

Due by noon on Monday, April 8, by email

Table 1: Pollster performance for the 2018 governor and Senate races as measured by mean error in vote margin,
number of states missed or not called, and log-loss error, which describes how well uncertainty is captured. We
use final forecasts, and we note that lower numbers indicate better accuracy. The measurements are for the
races in Figs. ??B and ??B, and they do not include the states that we combined into the Safe Red and Safe
Blue superstates.

Forecaster Sen. margin error Sen. # states missed Sen. log-loss error
Our model 4.6 pts. 3 missed 0.400
FiveThirtyEight.com 3.7 pts. 3 missed 0.410
Sabato NA 1 missed 0.379
Cook NA 9 not called 0.553
Inside Elections NA 1 missed, 1 not called 0.415
RealClearPolitics.com NA 8 not called 0.071

This (optional) extra credit project consists of 2 parts. Part 1 has 6 steps; Part 2 has 4 steps. Each step is
worth 1 point, and your total score (a max of 10 points) will be added to your final grade as extra credit. Part 1
should be solved using Matlab (I suggest checking the intuition behind your solutions by hand as appropriate).
Part 2 can be solved by hand. Your solutions must be clearly presented and well-explained to receive full credit.
I have included a few suggested websites as resources on the last page. You are encouraged to email me or
come to o�ce hours if you have questions (if o�ce hours conflict with your class or work schedule, let me know).

To complete Part 1, please fill in the Matlab files part1.m and part1 distance.m. For Part 2, scanned images
of handwritten notes are fine; if you would like to learn LATEX, send me an email and I can provide you with a
template document for typing solutions. A complete project consists of 3 files:

1. part1.m
2. part1 distance.m
3. a pdf file titled part2 YourName.pdf providing your solution to Part 2

Please submit these files (or the subset of files pertaining to the exercises you choose to do) to me by email as
a zipped folder with your name in the title by April 8 at noon.

1 Linear algebra applied to networks

Take-away : In this class, you learn how to perform various algebraic operations with matrices and compute
their eigenvalues and eigenvectors. Part 1 illustrates a few ways these Math 2174 tools are being applied in the
very active and fairly new field of network science.

A network is a collection of points (called nodes) and lines (called edges) that connect di↵erent pairs of points
(see Fig. 1a). Examples of networks include the internet, Facebook friendship, Twitter followership, highways,
flight paths between airports, and connections between neurons in the brain. In the Facebook setting, nodes
can be used to denote di↵erent accounts; an edge between two nodes denotes friendship between those two
individuals. While friendship is not directed (if ↵ and � are Facebook friends, so are � and ↵), this is not the
case on Twitter: ↵ may follow �, but � might not follow ↵. We call Twitter followership a directed network ;
for directed networks, we add an arrow to each edge to denote the edge direction (see Fig. 1b–1c).
The connections between nodes in a network (or graph) are described using matrices. In particular, the
adjacency matrix A = (a

ij

) of a graph with n nodes is an n⇥n matrix of 00s and 10s that represent connections
between di↵erent nodes. We will assume in this project that nodes are not connected to themselves, so note

log loss = � 1

M

MX

j=1

(yi log pi + (1� yi) log (1� pi))

• Log-loss error is a measure that rewards strong correct 
forecasts and penalizes strong incorrect forecasts:
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Forecasting the 2018 Senate races

• Model forecast 
compared to 538 
forecast 

• We agree by color 
except for FL and TN
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Forecasting the 2018 governor races
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Math 2174 Extra Credit Project

Due by noon on Monday, April 8, by email

Table 1: Pollster performance for the 2018 governor and Senate races as measured by mean error in vote margin,
number of states missed or not called, and log-loss error, which describes how well uncertainty is captured. We
use final forecasts, and we note that lower numbers indicate better accuracy. The measurements are for the
races in Figs. ??B and ??B, and they do not include the states that we combined into the Safe Red and Safe
Blue superstates.
Forecaster Gov. margin error Gov. # states missed Gov. log-loss error Sen. margin error Sen. # states missed Sen. log-loss error
Our model 4.1 pts. 4 missed 0.590 4.6 pts. 3 missed 0.400
FiveThirtyEight.com 3.1 pts. 4 missed 0.548 3.7 pts. 3 missed 0.410
Sabato NA 1 missed, 1 not called 0.585 NA 1 missed 0.379
Cook NA 12 not called 0.670 NA 9 not called 0.553
Inside Elections NA 2 missed, 2 not called 0.619 NA 1 missed, 1 not called 0.415
RealClearPolitics.com NA 12 not called 0.647 NA 8 not called 0.071

This (optional) extra credit project consists of 2 parts. Part 1 has 6 steps; Part 2 has 4 steps. Each step is
worth 1 point, and your total score (a max of 10 points) will be added to your final grade as extra credit. Part 1
should be solved using Matlab (I suggest checking the intuition behind your solutions by hand as appropriate).
Part 2 can be solved by hand. Your solutions must be clearly presented and well-explained to receive full credit.
I have included a few suggested websites as resources on the last page. You are encouraged to email me or
come to o�ce hours if you have questions (if o�ce hours conflict with your class or work schedule, let me know).

To complete Part 1, please fill in the Matlab files part1.m and part1 distance.m. For Part 2, scanned images
of handwritten notes are fine; if you would like to learn LATEX, send me an email and I can provide you with a
template document for typing solutions. A complete project consists of 3 files:

1. part1.m
2. part1 distance.m
3. a pdf file titled part2 YourName.pdf providing your solution to Part 2

Please submit these files (or the subset of files pertaining to the exercises you choose to do) to me by email as
a zipped folder with your name in the title by April 8 at noon.

1 Linear algebra applied to networks

Take-away : In this class, you learn how to perform various algebraic operations with matrices and compute
their eigenvalues and eigenvectors. Part 1 illustrates a few ways these Math 2174 tools are being applied in the
very active and fairly new field of network science.

A network is a collection of points (called nodes) and lines (called edges) that connect di↵erent pairs of points
(see Fig. 1a). Examples of networks include the internet, Facebook friendship, Twitter followership, highways,
flight paths between airports, and connections between neurons in the brain. In the Facebook setting, nodes
can be used to denote di↵erent accounts; an edge between two nodes denotes friendship between those two
individuals. While friendship is not directed (if ↵ and � are Facebook friends, so are � and ↵), this is not the
case on Twitter: ↵ may follow �, but � might not follow ↵. We call Twitter followership a directed network ;
for directed networks, we add an arrow to each edge to denote the edge direction (see Fig. 1b–1c).
The connections between nodes in a network (or graph) are described using matrices. In particular, the
adjacency matrix A = (a

ij

) of a graph with n nodes is an n⇥n matrix of 00s and 10s that represent connections
between di↵erent nodes. We will assume in this project that nodes are not connected to themselves, so note
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• We differ from 538 in our forecasts of Florida and Tennessee

Forecasting the 2018 senate races
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Forecasting the 2018 governor races

Solid Rep. (   95%)
Likely Rep. (   75%)
Lean Rep. (   60%)

Toss-Up ( 60%)
Lean Dem. (   60%)
Likely Dem. (   75%)
Solid Dem. (   95%)�

�
�

�

�
�

2018 Gubernatorial Elections
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• Model accuracy:              88.9%  (FL, IA, KS, OH wrong) 
• 538 (Nov. 4) accuracy:   86.1%  (FL, IA, KS, NV, OH wrong) 
• 538 (Nov. 6) accuracy:   88.9%  (FL, IA, KS, OH wrong) 
• Sabato accuracy:              91.7%  (FL, IA, OH wrong)

23



Approach: Superstates

Combine safe states into red and blue superstates

1. Safe Red 
2. Safe Blue 
3. Colorado 
4. Florida 
5. Iowa 
6. Michigan 
7. Minnesota 
8. Nevada 
9. North Carolina 
10. New Hampshire 
11. Ohio 
12. Pennsylvania 
13. Virginia 
14. Wisconsin
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{A user’s guide to FiveThirtyEight’s 2016 general election forecast; Table from Upshot, NY Times}

Background: 538

1. Collect polls 
•  Polls weighted by sample size, recency, and 538 pollster rating 

2. Adjust polls 
•  Adjustments made to account for third parties, convention bounce, house 

effects, poll sample (e.g. likely voters or registered voters), etc. 

3. Combine polls with other data 
•  Polling data combined with demographic and regional regressions, home-

state advantage, etc. 

4. Simulate election and account for uncertainty 
•  National, demographic/regional error, state-specific error accounted for



Background: HuffPost

1. Average polls by state 
•  Bayesian Kalman filter model used to average polls 
•  Recent polls more heavily weighted 
•  Historical data used for priors 

2. Forecast chance of winning by state 
•  Model simulated until Nov. 8 assuming voter intentions continue along 

current trajectories 
•  Undecideds incorporated into margin of error 

3. Simulate Electoral College outcome 
•  Undecideds at the national level incorporated into margin of error 
•  Monte Carlo within each state, but random numbers are correlated 

based on state-state correlations of results from past elections

{How we’re forecasting the presidential election, HuffPost; Table from Upshot, NY Times}



1. Example model dynamics
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Averaging polling data 
within each month removes 

finer scale features

{FiveThirtyEight}

Model forecasts are 
based on data up until 

(not including) 
election day



2016: Identifying likely voters

28

• LA Times predicted a Trump win 
• Their polls do not ignore “unlikely” voters 
• In other polls, likely voters are defined heavily by voter history 
• Some demographics who did not vote in 2012 favored Trump

{LA Times: Where the presidential race stands today}



3. Impact of noise in transmission parameters

• Model suggests a robust 
Republican voter bloc 

• Election results were sensitive 
to noise in Dem. transmission

Trump Electoral Votes: 196.64  1.4321
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Trump Electoral Votes: 199.7  6.4597
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3. Impact of noise in turnover parameters

• Election results are more 
sensitive to fluctuations in 
Dem. turnover than Rep. 
turnover

Trump Electoral Votes: 197.6  1.8091
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Comparison of 2012 & 2016 (presidential)
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States with most influential Rep.: 
1. FL 
2. PA 
3. VA 
4. OH 
5. MI 

States with most influential Dem.: 
1. FL 
2. PA 
3. NC 
4. OH 
5. MN

States with most influential Rep.: 
1. FL 
2. PA 
3. OH 
4. NC 
5. MN 

States with most influential Dem.: 
1. FL 
2. PA 
3. OH 
4. MN 
5. VA

2016 2012

*Note we do not consider the Red and Blue modules



Outlook: transmission parameters

Red Blue CO FL IN IA MI NV NM NC OH PA VA WI
Republican infection of this module
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Most influential swing states 
in 2016 and 2012: FL & PA 



2. Forecasting the 2014 senate races
538’s Forecast

2014 Senate Elections
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{538 Image from https://fivethirtyeight.com/interactives/senate-forecast/}

https://fivethirtyeight.com/interactives/senate-forecast/


2016 voter turnover parameters

34

• High infection rates are associated with high voter turnover
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Forecasting the 2014 gubernatorial races

• Our predictions agree with 538 
• Both models fail at FL, the closest race

{Table from 538}
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2016: Example sensitivity analysis
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10% increase on each nonzero 
parameter
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• Noise favors Trump 
• Increased Dem. turnover leads OH to vote Rep. 
• Reduced interaction between Blue Democrats and OH leads OH to vote Rep. 
• Increased Rep. turnover leads NV to vote Rep.


