Entropy and functional redundancy in biological networks

Alice C. U. Schwarze¹, Mason A. Porter², Jonny Wray³

¹Mathematical Institute, University of Oxford, UK ²Department of Mathematics, University of California Los Angeles, USA ³e-Therapeutics plc, UK

SIAM DS 2019

1. How can we understand robustness in biological networks? 2. How can we **measure redundancy** in biological networks? 3. Which **network motifs** contribute to redundancy? 4. Why is this **cool**?

$$\mathcal{N} = (V, E)$$

$$A_{ij} = \begin{cases} 1 & \text{if } e_{ij} \in E \\ 0 & \text{else} \end{cases}$$

$$\mathbf{x} := (x_1, x_2, x_3, \dots, x_N)^T$$
$$d\mathbf{x} = f(\mathbf{x}, \mathbf{A}, \xi)$$

J. Krumsiek, et al. *PloS one* 6.8 (2011): e22649.

STRING Database (2009)

Robustness of a function of a system to a perturbation

Robustness of a function of a system to a perturbation

• In biological networks: function = viability

system = organism/cell

perturbation = environmental changes/

mutations

- Structural redundancy indicates the existence of structurally similar subsystems that can perform the same function.
- Functional redundancy indicates the existence of structurally different subsystems that can perform the same function.

Or: How to recruit for your pirate ship

Or: How to recruit for your pirate ship

Minimal crew (5):

Or: How to recruit for your pirate ship

Minimal crew (5):

Minimal crew with "structurally redundant" members (10):

Or: How to recruit for your pirate ship

Minimal crew (5):

Minimal crew with "structurally redundant" members (10):

Minimal crew with "functionally redundant" members (6):

- Structural redundancy indicates the existence of structurally similar subsystems that can perform the same function.
- Functional redundancy indicates the existence of structurally different subsystems that can perform the same function.

1. How can we **understand robustness** in biological networks? *Hypothesis: Functional redundancy is important for robustness*

2. How can we **measure redundancy** in biological networks?

3. Which **network motifs** contribute to redundancy?

4. Why is this **cool**?

Information-based measures of redundancy

$$\mathbf{x} := (x_1, x_2, x_3, \dots, x_N)^T$$
$$d\mathbf{x} = f(\mathbf{x}, \mathbf{A}, \xi)$$

$$H(\mathbf{x}) := \frac{1}{2} \ln \left[(2\pi e)^N \det(\mathbf{COV}(\mathbf{x})) \right]$$

Information-based measures of redundancy

$$\mathbf{x} := (x_1, x_2, x_3, \dots, x_N)^T$$
$$d\mathbf{x} = f(\mathbf{x}, \mathbf{A}, \xi)$$

$$\mathbf{x}_{\alpha} = (x_1, \dots, x_k)^T,$$

$$\mathbf{x}_{\beta} = (x_{k+1}, \dots, x_N)^T$$

$$H(\mathbf{x}) := \frac{1}{2} \ln \left[(2\pi e)^N \det(\mathbf{COV}(\mathbf{x})) \right]$$

$$I(\mathbf{x}_{\alpha}, \mathbf{x}_{\beta}) := H(\mathbf{x}_{\alpha}) + H(\mathbf{x}_{\beta}) - H(\mathbf{x})$$

Information-based measures of redundancy

Kernel set

$$\mathbf{x}_{\kappa} = (x_1, \dots, x_k)^T$$

Output set

$$\mathbf{x}_{\omega} = (x_{k+1}, \dots, x_N)^T$$

$$R(\mathbf{x}_{\kappa}, \mathbf{x}_{\omega}) := \sum_{j=1}^{\kappa} I(x_j, \mathbf{x}_{\omega}) - I(\mathbf{x}_{\kappa}, \mathbf{x}_{\omega})$$

$$R_F(\mathbf{x}_{\kappa}, \mathbf{x}_{\omega}) := \sum_{j=1}^k \left[\frac{j}{k} R(\mathbf{x}_{\kappa}, \mathbf{x}_{\omega}) - \langle R(\mathbf{x}_{\iota}, \mathbf{x}_{\omega}) \rangle_{\iota \subset j\kappa} \right]$$

1. How can we **understand robustness** in biological networks? *Hypothesis: Functional redundancy is important for robustness*

2. How can we **measure redundancy** in biological networks? *Information-theoretic approach uses subsystem entropies*

3. Which **network motifs** contribute to redundancy?

4. Why is this cool?

$$COV = \frac{1}{2} \sum_{L=0}^{\infty} 2^{-L} \sum_{l=0}^{L} {L \choose l} (\mathbf{A}^l)^T \mathbf{A}^{L-l}$$

Matrix

Graph diagramme

Chain diagramme

$$(A^{T})^{5}$$

$$(\mathbf{A}^{\mathrm{T}})^3 \mathbf{A}^2$$

$$COV = \frac{1}{2} \sum_{L=0}^{\infty} 2^{-L} \underbrace{\begin{pmatrix} L \\ l \end{pmatrix}}^{L} (\mathbf{A}^{l})^{T} \mathbf{A}^{L-l}$$

Matrix

Graph diagramme

Chain diagramme

 $(A^{T})^{5}$

 $(A^{T})^{3}A^{2}$

COV

H

$$H \propto \sum_{m \in \text{motifs}} w_m \# m$$

$$= \sum_{k=1}^{\infty} \sum_{\mathbf{x}, \mathbf{y} \in \mathbb{N}^k} \frac{(-1)^{k+1}}{k} \prod_{i=1}^k 2^{-(x_i + y_i)} {x_i \choose x_i} \# m_{\mathbf{x}, \mathbf{y}}$$

1. How can we **understand robustness** in biological networks? *Hypothesis: Functional redundancy is important for robustness*

2. How can we **measure redundancy** in biological networks? *Information-theoretic approach uses subsystem entropies*

- 3. Which **network motifs** contribute to redundancy? *All undirected cycles contribute, cycles with a single source have the greatest contribution*
- 4. Why is this **cool**?

1. How can we **understand robustness** in biological networks? *Hypothesis: Functional redundancy is important for robustness*

2. How can we **measure redundancy** in biological networks? *Information-theoretic approach uses subsystem entropies*

- 3. Which **network motifs** contribute to redundancy?

 All undirected cycles contribute,

 cycles with a single source have the greatest contribution
- 4. Why is this **cool**? *Ubiquity of functional redundancy Quantitative approach to redundancy Understanding the influence of dynamics*