Stochastic Spatial Model for Yeast Biofilm Social Interactions: Investigating the Fitness Benefits of Within-Strain Cooperation

Adrienna Bingham, Aparajita Sur, Leah Shaw, Helen Murphy

William and Mary

May 21, 2019

Susceptibility of Cooperation

- Cooperation requires individuals to engage in behaviors that are costly to themselves, but beneficial to others
- Do not normally form stable communities
- They are susceptible to cheaters
 - Cheaters benefit from cooperation, but do not contribute
- Cheaters outgrow cooperators
- Cooperators become extinct

Kin Recognition

- Kin selection results from an increase in the cooperative gene in a population
- Therefore, cooperation can evolve through kin selection

² https://nationalzoo.si.edu/animals/black-tailed-prairie-dog

https://digitalmedia.fws.gov/digital/collection/natdiglib/id/23473/rec/5

⁴Waldman, B. (1988). The ecology of kin recognition. Annual review of ecology 499 and systematics 19(1)

Kin Recognition

- Kin selection results from an increase in the cooperative gene in a population
- Therefore, cooperation can evolve through kin selection
- One way kin selection works is with kin recognition

2

- Ability of an individual to recognize kin or individual in genetic lineage ⁴
- Cooperators restrict cooperation to kin
- Most examples of cooperation are kin recognition

https://nationalzoo.si.edu/animals/black-tailed-prairie-dog

https://digitalmedia.fws.gov/digital/collection/natdiglib/id/23473/rec/5

Waldman, B. (1988). The ecology of kin recognition. Annual review of ecology 499 and systematics 19(1)

Cooperation in Microbial Communities

- Much more research being done on social interaction in microbes
- Biofilms are microbial cooperative communities
 - Attached to a surface
 - Protected by an extracellular matrix
 - Kin selection evident just because of clonal growth ⁵
- Is there a benefit for cooperators in biofilms to express kin recognition?

⁵Nadell, Drescher, Foster (2016). Spatial structure, cooperation and competition in biofilms. Nat Rev Micro.

http://www.tactengineering.com

May 21, 2019

Bixler & Bhushan (2012). Biofouling: lessons from nature. Phil. Transactions of the Royal Soc. of London.

Saccharomyces cerevisiae

- Model organism
- Common laboratory yeast/baker's yeast
- Exhibit social behaviors such as biofilm formation and cooperation 8
- Now shown to exhibit kin recognition 9

⁸Reynolds, T. B. and G. R. Fink (2001). Bakers yeast, a model for fungal biofilm formation. Science.

⁹Smukalla, et al. 2008 FLO1 Is a variable green beard gene that drives biofilm-like cooperation in budding yeast. Cell. 40 a. Cell.

Simulating the Growth of Biofilms

- Based off Momeni et al. 10
- Discrete time Monte Carlo simulation
- Incorporates kin recognition in three dimensional array
- Vary social scenario by changing growth rate parameters

May 21, 2019

Momeni et al. (2013). Strong inter-population cooperation leads to partner intermixing in microbial communities. Elife,

Cell Growth

- Select a random cell to divide
- Determine the probability it will divide
- Find an empty spot
- Move cells so daughter cell can be placed

Benefit to Relatedness in Varying Abundance

Benefit to Relatedness in Varying Densities

Conclusions

- While we know kin selection is evident in biofilms, we show there is a benefit to kin recognition
- The benefit to kin recognition is highest for intermediate cooperation effect
- For populations with more abundant cooperators, the benefit to kin recognition is not as high
- Cooperators engaging in kin recognition tend to do better in higher density populations