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Motivations: What feedback mechanisms are at play?
» Hamilton et al (2016) and Earle et al (2018) suggest a
runaway albedo effect

» Earle et al (2017) suggest SP’s location within diurnal zone




Today's Talk

» Description of the Budyko-Widiasih energy balance model

» Approximation with System of ODEs

» Results and comparison with observations



Nondimensional Budyko-Widiasih-type Energy Balance
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Nondimensional Budyko-Widiasih-type EBM
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on critical temperature
relates incoming and outgoing
radiation
0 = C/B relates heat transport and
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s(y,¢) annual average solar radiation
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Incoming solar radiation: s(y, ()
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Incoming solar radiation: s(y, ()
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s(v,¢) = 1 = 52p2(C)p2(y) — sapa(Q)paly) — seps(¢)pe(y)

p2i(y) : 2i-th Legendre polynomial

¢ : cos(obliquity)



Nondimensional Budyko-Widiasih-type EBM
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o(y,7) = Q(T(y,t) — Tc)/B normalizes temperature based
on critical temperature
relates incoming and outgoing
radiation
0 = C/B relates heat transport and
outgoing radiation
s(y,¢) annual average solar radiation
a(y,n) surface albedo



Ice Line Assumption

There are two ice lines, s and 7y, between which there is always
ice and ns < .

ap —1<y<ns
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Ice Formation Assumption

Permanent ice forms if the annual average temperature is below a
critical temperature T, and sublimates if the annual average
temperature is above T¢.
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Budyko-Widiasih Model Summary

07 — s(y. 0 —aly.m) i~ gly.7) ~ 3 (oly. ) )
% = Ap(ns)
dc%'v = —p(nn)

Ice Line Assumption: There are two ice lines, ns and ny,
between which there is always ice.

No symmetry assumption: Do not require s = —ny.



Approximate System of ODEs

Following framework given in McGehee and Widiaish (2014), let X
be the space of functions of the form

S (i +vai)p2ily) v < s
o(y) = S0 o vaip2i(y) ns <y <
3 o(wai +vai)pai(y) v >

where up, voi, wp; € R for each i,py; is the 2i-th Legendre
polynomial, and have
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Approximate System of ODEs
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Approximate System of ODEs

Assuming that the wuy;'s and the wy;'s have decayed to their
equilibria, we have
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Approximate System of ODEs

Assuming that the wuy;'s and the wy;'s have decayed to their
equilibria, we have
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—G(ns)
- (01— 02) + (1 + 02 = 2) o7, 2ip2i($)P2i (1)
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vo = —(vo — F(ns,nn))
ns = Mvo — G(ns))
v = —A(vo — G(nn))-



Invariant Surfaces
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Reduction for small \

ns = MF(ns,nn) — G(ns))
v = —AF(ns,nn) — G(nn))-

With Symmetry Assumption!
Equator = 0 < y = sin(latitude) < 1 = North Pole
Ns = —1N



nN

1.0

0.5

0.0

-0.5

-1.0




nN

1.0

0.5

0.0

-1.0

Small, unstable ice belt

-1.0

-0.5

0.0 0.5
ns



nN

1.0

0.5

0.0

-1.0

Small, unstable ice belt




Reduction for small \

ns = M F(ns,nn) — G(ns))
v = —AF(ns,nn) — G(nn))-

No Symmetry Assumption!
South Pole = —1 <ns < ny <1 = North Pole
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Persistence of Asymmetric Ice Belts
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Stable, asymmetric ice belts are possible for any albedo contrast.

AN and EJ. (2019).
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Caveats:

» We don't really know what values
to pick for y and o

» Basin of attraction of the "“Sputnik
Panitia ice belt” is highly
dependent on 4 and ¢

D i PR » Pluto’s albedo has large
longitudinal differences
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Summary

» Stable, asymmetric ice line equilibria are present in the
Budyko-Widiasih EBM

» Albedo contrasts do not seem to be the driving factor for this
asymmetry

» The model might be able to tell us about Pluto’s Spunik
Planitia...

» its location is correlated with annual average sunlight
distribution,

» but we don't know if the glaciers should be growing or
shrinking...

» so more scientific investigations are needed!



Planetary Motion and its Effects on Climate

MS149: Wednesday, May 22nd, 05:00PM

The Snowball Bifurcation on Tidally Influenced
Planets
Jade Checlair, University of Chicago

Ice Caps and Ice Belts: The Effects of Obliquity on
Ice-Albedo Feedback
Brian Rose, State University of New York

Modeling Martian Climate with Low-Dimensional
Energy Balance Models
Gareth Roberts, College of the Holy Cross

Effects of a Rogue Star on Earth’s Climate
Harini Chandramouli, University of Minnesota

MS162: Thursday, May 23rd, 08:30AM

The Geological Orrery: Mapping the Chaotic History
of the Solar System using Earth’s Geological Record
Paul Olsen, Columbia University

Forcing-Induced Transitions in a Paleoclimate Delay
Model
Courtney Quinn, University of Exeter

Modeling the Mid Pleistocene Transition in a
Budyko-Sellers Type Energy Balance Mode! using
the LR04 Benthic Stack

Somyi Baek, University of Minnesota

A Conceptual Glacial Cycle Model with Diffusive
Heat Transport
James Walsh, Oberlin College




Thank you!
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