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Introduction

@ Conceptual climate models
e Study physical mechanisms of climate variability
@ Differential delay models

o Infinite-dimensional, but can be formulated in terms of a single variable
o Mostly introduced in an ad-hoc manner

@ Projection methods can place derivation on stronger mathematical
foundation

e Mori-Zwanzig Formalism
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Introduction

Conceptual climate models
e Study physical mechanisms of climate variability
@ Differential delay models

o Infinite-dimensional, but can be formulated in terms of a single variable
o Mostly introduced in an ad-hoc manner

Projection methods can place derivation on stronger mathematical
foundation

e Mori-Zwanzig Formalism

El Nifio Southern Oscillation (ENSO)

Delay Model of ENSO (Suarez and Schopf (1988))

dTe

— = Te(t) — T3(t) — aT.(t — 6)
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El Nifio Southern Oscillation (ENSO)

( Atmosphere

Kelvin wave
ROSSby wave =] T

Ocean

1Keane, Krauskopf, Postlethwaite, 2017.
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Mori-Zwanzig Formalism

Mori-Zwanzig Formalism

Linear example for ¢ = (gZA), $) : R — R" continuously differentiable:

Q- DO @0
dt \¢ An An) \¢)’ ¢(0) %)
Goal: Equation for resolved variables qg € R™ only,

the unresolved variables are ¢ € R"~.

Swinda Falkena Delay Equation Climate Models May 22, 2019

4/16



Mori-Zwanzig Formalism

Mori-Zwanzig Formalism

Linear example for ¢ = (g?), $) : R — R" continuously differentiable:

Q- DO @0
dt \¢ An An) \¢)’ ¢(0) %)
Goal: Equation for resolved variables qg € R™ only,

the unresolved variables are ¢ € R"~.

Use Variation of Constants (VoC):
d 4 A t A
) = Aud(t) + A% + / A12e"2(7%) Agy (s)ds

0
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Mori-Zwanzig Formalism

Mori-Zwanzig Formalism

Linear example for ¢ = (g?), $) : R — R" continuously differentiable:

Q- DO @0
dt \¢ An An) \¢)’ ¢(0) %)
Goal: Equation for resolved variables qg € R™ only,

the unresolved variables are ¢ € R"~.

Use Variation of Constants (VoC):

d - . t .
agb(t) = A11d(t) + Appe”2tx% + / A126”2(t5) Ay O(s)ds
0

Markovian Noise Memory
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Mori-Zwanzig Formalism

Mori-Zwanzig Formalism

In general, consider a system of ODEs:

d
L) = R@(). 6(0) =x.
¢(t) € R" continuously differentiable, R : R” — R".

Evolution of an observable u(x, t) := g(#(x, t)) along a solution satisfies
the PDE

0
au(x7 t) = Lu(x,t), u(x,0)=g(x),
where [Lu](x) = 37 ; Ri(x)9xu(x) is the Liouville operator.
A projection P onto a set of resolved variables q3 with complement

Q=1-P.
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Mori-Zwanzig Formalism

Mori-Zwanzig Formalism

t
%g%(t) = A g(t) + Appe2i% + / Are?2(t75) Ay, §(s) ds
0

Generalized Langevin Equation?

%qﬁ;(x, t) = Ri(d(x, t)) + Fi(x, t) + /O Ki(¢(x,t —s),s)ds,

with
Fi(x,t) = [etQE QRLg](x), Ki(X,t) = [PLFi](x, t).

Fi(x, t) solves the orthogonal dynamics equation:

%F;(X, t) = Q,CF,'(X, t), F,'(X, 0) = Q,CX,'.

2For derivation see Chorin, Hald, Kupferman, 2002.
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Application to the El Nifio Southern Oscillation (ENSO)

ENSO Model

Two-Strip Model (rewritten)?

0 T. Temperature
8thc%—€0hcﬁ—6&hc::/L<1——ii;}g>g(x)7}(xE,t) 2t ctuator
1 9 he  Thermocline
Oth, + egh,, — —28Xh,, = —#—2g(x) Te(xg, t) at equator
Yn Yn h, Thermocline
— aty =yn
aﬂ;+q4;—q0k+l+ﬁm0_o

where he(x,t) = he(x,t) — ﬁlyzh,,(x, t). The boundary conditions are:

1 1

re 1+y2

mmﬁy:QW—1+ﬁ)mm¢% mujy:( )muxy

v

3Rewritten from Jin, 1996.
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Application to the El Nifio Southern Oscillation (ENSO)

ENSO Model

Two-Strip Model (rewritten)?

0 T. Temperature
athc+50hc+: M(l - m)g(x)Te(xE,t) at equator
he  Thermocline

1 0
Oth, + €ohy, — F = —,upg(x) Te(xg, t) at equator
n n

h, Thermocline

1 % e
atTe+Te—(hc+1+yn2hn) =0 aty =y

where he(x,t) = he(x,t) — ﬁlyzh,,(x, t). The boundary conditions are:

1 1

re 1+y2

he(0,t) = (rW - )h,,(O, t), he(l,t) = ( )h,,(l, t).

1+y2

v

3Rewritten from Jin, 1996.
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Application to the El Nifio Southern Oscillation (ENSO)

Application ENSO

Consider a linear version, i.e. no dependence of cr, ¢, on e.g. Te.
Use a linear projection onto T..
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Application to the El Nifio Southern Oscillation (ENSO)

Application ENSO
Consider a linear version, i.e. no dependence of cr, ¢, on e.g. Te.
Use a linear projection onto T..

Mori-Zwanzig Formalism

%(X, t) = —cr(x) Te(x, t)

(en— L
1 (60 y,% 8)()1'

1+y2
t

+ / cn(x) (Boef(eﬁax)(t*s) — B1e_(eo_éax)(t_s))
0

-8(x) Te(xe, 5)ds

+ cn(x) (e_(€°+ax)thc(x, 0) + hn(x, 0))

See derivation in arXiv:1902.03198.
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Application to the El Nifio Southern Oscillation (ENSO)

Application ENSO
Consider a linear version, i.e. no dependence of cr, ¢, on e.g. Te.
Use a linear projection onto T..

Mori-Zwanzig Formalism

dT,

—d: (x,t) = —c7(x) Te(x, t)

1 7(607%8)()1’
e Yn

1+y2
t

+ / cn(x) (Boef(eﬁax)(t*s) — B1e_(eo_éax)(t_s))
0

-8(x) Te(xe, 5)ds

+ cn(x) (e_(€°+ax)thc(x, 0) + hn(x, 0))

See derivation in arXiv:1902.03198.

Is this a delay equation?
Delay Equation Climate Models May 22, 2019 8/16



Application to the El Nifio Southern Oscillation (ENSO)

Characteristics

Memory-Term

& —(eo— L8, (t—
/ Ch(XE)KBOe_(EﬁaX)(t—s)_ Be (@O s))
0

. g(x)} Te(xg,s)ds

XE

@ Interested in east of the basin: x = xg
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Application to the El Nifio Southern Oscillation (ENSO)

Characteristics

Memory-Term

ch(xE)Ao(Boe*€°(1*XW) Te(xe, t — (1 — xw))

— BlArWe_60(1+y3XW) Te(XE, t — (]. -+ y,%XW)))

a1

@ Interested in east of the basin: x = xg

@ Follow signal along characteristics to eastern
boundary

o O:f = —eof — Of — X—Xg=1t—1
o Oif = —eof + 5 0xf = x —xo = 3(t — to)

@ No reflection at eastern boundary
o Energy loss at western boundary: A,y

e Wind forcing acts locally: g(x) = Aoy, (x)
Delay Equation Climate Models
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Application to the El Nifio Southern Oscillation (ENSO)

Linear Delay Equation

dTE
dt

= —cr(xe) TS (1)
+ cnlxe) Ao (Boe I TE(t — (1 - xu)

~ BiAwe o) TE(r (1 4 ygxw)))

Note the noise term vanishes by assuming no reflection at the eastern
boundary.
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Application to the El Nifio Southern Oscillation (ENSO)

Linear Delay Equation

dTE

T —cr(xe) TE(t)

+ en(e) Ao (Boe o0 TE(E — (1 )

~ BrAwe I TE( - (14 y2x,)))

Note the noise term vanishes by assuming no reflection at the eastern
boundary.
Since 1 — x,, < 1+ y2x, we assume TE(t — (1 —x,)) ~ TE(¢).

Delay Model ENSO
a7t
dt

Swinda Falkena Delay Equation Climate Models May 22, 2019 10/16

= CsTeE(t)—CLTeE(t—d)




Application to the El Nifio Southern Oscillation (ENSO)

Nonlinear ENSO Model

Nonlinear Temperature Equation*

1
0:Te + cr(x) Te — | ¢t (x)(1 — BT2) (hc + mhn) ~0

“Based on Dijkstra, Neelin, 1995.
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Application to the El Nifio Southern Oscillation (ENSO)

Nonlinear ENSO Model

Nonlinear Temperature Equation*

1
O Te + cr(x) Te = (X)L = BT2)(he + Wh,,) ~0

Two approaches:
@ Approximation to Mori-Zwanzig formalism

& = (e — cr(xe)) TE(D) — i TE(t — d) — B TE(e)
+ B[ TE(t - dy

“Based on Dijkstra, Neelin, 1995.
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Application to the El Nifio Southern Oscillation (ENSO)

Nonlinear ENSO Model

Nonlinear Temperature Equation*

1

O Te + cr(x) Te = (X)L = BT2)(he + Wh,,) ~0

Two approaches:
@ Approximation to Mori-Zwanzig formalism

& = (e — cr(xe)) TE(D) — i TE(t — d) — B TE(e)
+ B[ TE(t - dy

@ Variation of constants
e Equations for h. and h, are still linear

dTeE * E * TE x TE 3
=(cs —er(xe)) Te (t) = Te (t — d) — Bes T (1)

dt
+ B[ Te (1) T (t — d)
“Based on Dijkstra, Neelin, 1995.
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ENSO Delay Models

Suarez and Schopf Model (S&S)

dT
== T(t) — T3(t) — aT(t —9)

Variation of Constants Model (VoC)

% =T(t)— T3(t) —aT(t - 6)(1 —vT3(t))

Mori-Zwanzig Model (MZ)

dT
4 =T - T3(t) —aT(t—6)(1 —yT3(t - 9))
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Analysis of Delay Models

Periodic Solutions

(D,) @injesadwa |

12 14 16 18 20
Time (year)

10
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Analysis of Delay Models

Bifurcation Diagrams

1.2 T -
— Hopf
—pitchfork
1 —connecting orbit

— per ~ 669 days
* ——per ~ 1003 days

3081 — per ~ 1338 days
0.6
0.4 ‘ : ‘ :
0 100 200 300 400
¢ (days)
Top: v=0.
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Analysis of Delay Models

Bifurcation Diagrams
VoC

1.2 T T T T
—Hopf
— pitchfork
— connecting orbit ||

—per ~ 669 days
1.2 T T
— Hopf
—pitchfork 0.6

——per ~ 1003 days|
——per ~ 1338 days
—connecting orbit [
— per ~ 669 days
* ——per ~ 1003 days 0.4

0 100 200 300 400

3081 — per ~ 1338 days
§ (days)
o8] MZ
1.2 T y T T
L L L T / — Hopf
0.4 /
0 100 200 300 400 / —pitchfork !
I—connecting orbit ||

o 1 \&
*
s0.8f — per ~ 1706 days|]|

Top: v = 0. Right: v = 0.49.

0.4 . . . .
0 100 200 300 400
¢ (days)
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Summary

@ Mori-Zwanzig formalism can be used to derive delay equation models
e When the equations for the unresolved variables are linear variation of
constants is equivalent

@ Application to a two-strip ENSO model leads to an improvement in
period compared to a previously studied model

@ Method can be extended to other wave equations (firstly, to those
which are linear in the unresolved variables)

@ For nonlinear models better approximation techniques for the
orthogonal dynamics are needed

S.K.J. Falkena, C. Quinn, J. Sieber, J. Frank, H.A. Dijkstra, Derivation of Delay
Equation Climate Models Using the Mori-Zwanzig Formalism, 2019,
arXiv:1902.03198, (under review in PRSA).
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Thank you!
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