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Introduction [\, W L

* Main question: How can we predict the future of some
complex time series based on past history?

* Applications: Weather and climate forecasting, stock market
prediction, social media behaviors, living systems, and more

« Hybrid Approach: Combine artificial intelligence/machine
learning with mathematical modeling



What kinds of systems are hard to predict?






e T

S 125 250 1375 500
True al 30,00}

-

Hurricane Wilma

October 19, 2005
5 PM EDT Wednesday
NWS TPCiNational Hurricane Center
Advisory 18
Current Center Location 17,7 N 83,7 W
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Question: What makes systems like the weather
hard to predict?

Answer: Chaos
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Features of Chaos
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- (yellow and red) start
close together

Sensitivity to initial conditions, i.e. the “butterfly effect”

Lyapunov time = time over which the distance between initially close
increases by a factor of e (2.78128...)

Long term prediction is impossible even though system is deterministic

Behavior can appear random in the long term






How can machine learning help us
predict these systems?



Background: Artificial Intelligence and Machine Learning

ARTIFICIAL INTELLIGENCE

IS NOT NEW

ARTIFICIAL INTELLIGENCE

Any technigue which enables
computers to mimic human
behavior

1950’s 1960’s 1970’s 1980’s 1990’s 2000's 2010s

ORACLE

Copyright ® 2013, Oracle and/er its affiliates. All rights reserved. |

blogs.oracle.com/bigdata/difference-ai-machine-learning-dee

Artificial Neural Networks: A kind of machine learning approach that uses
networks of neuron-like units to process information



https://blogs.oracle.com/bigdata/difference-ai-machine-learning-deep-learning

Deep Learning
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Information processed through successive layers of neuron-like units. Primarily
feed-forward architecture.

Deeper layers perform more sophisticated information processing.

Weights between the layers are trained so that the input matches the desired
output for a set of training data. Large amounts of training data needed.

Great for classification tasks, but not as good for predicting time evolution

Feedback loops can be added to give the system memory but these make
training the weights much harder and sometimes impossible



Reservoir Computing

Provides a way to train Recurrent Neural Networks

Independently introduced by Jaeger (2001), and Maass et al.
(2002).

Main component is a very high-dimensional system, called
the reservoir.

The reservoir provides a rich repository of dynamics. With
training it offers a “universal” dynamical system

Amenable to simple hardware implementations



Reservoir Computing

Reservoir: Recurrent Artificial Neural Network,

capable of rich dynamics

Input

Input: Input through fed into reservoir  -2¥¢"

through fixed, random connections  u(t)

Reservoir Dynamics: '”‘ ') » "
r(t + At) = tanh [Ar(t) + Wiu(t)]

Output: Output weights are fit to give
the best outputs for the training data

(Key advantage: Training is simple and efficient
because only output weights are adjusted
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Reservoir

neuron-like units

random, sparse
connections

internal firing
dynamics



Predicting multiple time steps forward

ug(t + At)

In prediction mode, the output of the
reservoir is fed back in as input

Ur(t) = Wour™(t)
I‘(t -+ At) — tanh [Ar(t) + WinflR(t)]



Q: Should the reservoir be critical?
Critical Dynamics in Networks of Neurons

Experimental evidence: Avalanche size and duratior
Size distribution: distributions follow power-laws (first observed in

1001~ cultured neurons by Beggs and Plenz, 2003)
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Q: Should the reservoir be critical?

Lessons from modeling neural networks:

Phase Transition “Dynamic range”
in Dynamics maximized at critical point
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Tuning Parameter

(network or dynamics) Dynamic range:

A =10g10(Smaz) — 10810 (Smin)
Information processing is maximized for critical avalanching dynamics:
Maximized dynamic range A at the critical point. (Kinouchi and Copelli

2006, Shew and Plenz 2013)

A: Spectral radius near | (i.e. critical) gives good
results, but we see robust performance over a wide
rance of values.



Reservoir doesn’t have to be an
Artificial Neural Network

ar(t + At)

Reservoir requirements

e |[nput-output system
e Complex repository of dynamics
e Internal memory



Reservoir Computing for Predicting
Spatiotemporally Chaotic Systems

« Spatiotemporal Chaos: Pattern evolves in space and time.
Time evolution is chaotic. Example weather.

* Our test system: Kuramoto Sivasinshy (KS) system,
designed to model the chaotic propagation of waves in

space and time Yt = —YYz — Yzz — Yzzzx
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In that time, the distance
between initially close
trajectories grows by a factor

of about 150 (e>).
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Ref: J. Pathak, B. Hunt, M. Girvan, Z. Lu, and E. Ott. Phys. Rev. Lett. (2018).
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Results

4 h
True State : Notice that the predicted

state looks very much like
the true state even after
the predictions become
unreliable.

The “climate” is accurately
captured even after the

Difference “forecast” fails.
: \ | \_ Y,
| )
Li2 See Ed Ott’s talk on Wednesday morning
I = Ref: Pathak, Lu, Hunt, Girvan, and Ott. Chaos (2017))
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Ref: J. Pathak, B. Hunt, M. Girvan, Z. Lu, and E. Ott. Phys. Rev. Lett. (2018).



Results

True State
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Advantages of the RC

e Seems to capture the

climate better than other

model-free methods
e Simpler to implement

e Not prone to spurious
results
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Ref: J. Pathak, B. Hunt, M. Girvan, Z. Lu, and E. Ott. Phys. Rev. Lett. (2018).



What about predicting really large systems?

RESERVOIR
SIZE

TRAINING
TIME

SYSTEW S|2E

SYSTEW S|2E

TRAINING
TME

RESERVOIR
SIZE

Typical spatiotemporal
systems, like the weather,

are very large. How do we
deal with them?
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Solution: Parallel Reservoir Computing
| 4 A

Architecture: Each reservoir takes inputs from a

spatially local neighborhood and predicts a subset
of its neighborhood.

Performance: Using model systems, we have shown

this scheme is highly effective for very large
systems.

Next challenge: Real weather forecasting
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What about predicting stochastic systems?

A simple test case: Predicting user activity on Twitter

Ref: D. Darmon, J. Sylvester, M. Girvan, and W. Rand, “Predictability of User Behavior in Social Media:
Bottom-Up v. Top-Down Modeling,” International Conference on Social Computing (2013).



Predicting User
Activity on Twitter

Sample Data for One User

4 Timestamp\ Tweet Text

2013-08-22 12:54:06| Is Your Gmail Social? How to Use Gmail Daily to Build an Engaged Com
2013-08-22 13:11:22| Facebook's Embedded Posts Now Available to Everyone http://t.co/Cc0
2013-08-22 13:14:06| The Credible Hulk http://t.co/ql7VrcSdBs

2013-08-22 13:29:02| 25 Things You Didn’t Know About Ninjas http://t.co/Cc]z92sRyy
2013-08-22 13:32:59| Twitter Users: Revoke and Reestablish Third Party App Access Now httj
2013-08-22 13:48:46| 10 Brilliant Facebook Marketing Tactics to Increase Reach and Engagemc
2013-08-22 14:17:11| Google Now Adds Cards for NCAA Football Scores, Concert Tickets, (
2013-08-22 15:18:03| What is the NSA Really Up To? [COMIC] http://t.co/hakog | mFNX
@I3-08-22 I5:39:% 6 Things Every Good Business Blog MUST Have http://t.co/KRGzZRCrt



http://t.co/Cc0q3cSTt6
http://t.co/q17VrcSdBs
http://t.co/CcJz92sRyy
http://t.co/qL9LbnGO6e
http://t.co/hakoq1mFNX
http://t.co/KRGzZRCrbm

Time
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, Predicting User Activity on Twitter

0
0
0
300
0

(600s = 10 minutes)

tweeted in the interval, O if not
predict the user’s activity based
only on his/her past activity

e Divide time into short intervals
activity?

* Discretize activity: 1 if user
« Can we predict the user’s
* First approach: Start by trying to

S
©
Time (600 s increments)
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, Compare Approaches

e Reservoir Computing (RC)

>

>

“Top-down”: Relaxed from very complicated dynamics until
maximum predictive capability is reached

Black-box, hard to interpret

e Causal State Modeling (CSM) (similar to hidden markov modeling):

>

Looks at the user’s past N steps and determines probability of
tweeting in the next time step, based on previous behavior

“Bottom-up”: Aims to construct the simplest predictive model

Easy to interpret



, Predicting User Activity on Twitter

Build model for each user separately
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Both methods showed strong
improvements in prediction for a
subset of users based on limited

Comparing “top-down” (RC)
and “bottom-up”’ (CSM)

approaches info (the user’s own previous
history)
@ |
© ° gg'\/' « Average improvement of the two
o methods was about the same
S | .
g  For some users, CSM did better,
é <« for others RC did better
g
o s . * Extensions: we’re working on
Euo. R i S T prediction schemes that also take
RN 37 ORI into account the activity patterns
o ; in the user’s network
o J
* Challenge: how can we combine

00 02 04 06 08 1.0 approaches?
Tweet Rate

Ref: D. Darmon, J. Sylvester, M. Girvan, and W. Rand, “Predictability of User Behavior in Social Media:
Bottom-Up v. Top-Down Modeling,” International Conference on Social Computing (2013).



How do we effectively combine approaches?

e Sometimes we want to combine 2 or more data-driven

approaches, like the “top-down” and“bottom-up”
approaches

e Other times we have knowledge of the dynamics (e.g., in
weather) and we want to combine knowledge-based
models with knowledge-free (data-driven) models



Hybrid Architecture
T e |

X(t) Input Layer X,(J[+AJ[)
> \ / y| Alternate Output Layer >
/ model(s)
Y
- )
< <

* |nputis fed into both the alternate model(s) and the reservoir (through
input layer)

* Qutput from the alternate model(s) is fed into the reservoir (through
input layer) and the output layer

 Weights in the output layer are trained to maximize prediction in the
training data.

Ref: J. Pathak, A. Wikner, R. Fussell, S. Chandra, B.R. Hunt, M. Girvan, and E. Ott, "Hybrid forecasting of chaotic
processes: using machine learning in conjunction with a knowledge-based model." Chaos, 28, 041101 (2018).



Performance of the Hybrid Model
for a Simple Test Case

4 Predicted - True )
(a) Low Error Knowledge-based Predictor
I ' A — — o —— T |
;8 s ,_f-.!,:‘}r =S KS System
10 F " e e | Yt = —YYz — Yzz — Yzzax
T e, S
(b) Large Reservoir
N | —— S o
20} s = Imperfect “model”
10} ' - - = -
| — ""_":\-‘—.-“_,L_-.__i‘ Yt = —YYz — (1 + E)yacac — Yzxxx
(c) Hybrid (a+b) |
C'| T BN S
20+ e —
10 [~ —— -“- -
1 1 1 1 ﬁ 1 ‘T.a
2 & 6 g 10 12
# of Lyapunov times )
\

Good model + large reservoir combine
S to give impressive predictions y

Ref: J. Pathak, A. Wikner, R. Fussell, S. Chandra, B.R. Hunt, M. Girvan, and E. Ott, "Hybrid forecasting of chaotic
processes: using machine learning in conjunction with a knowledge-based model." Chaos, 28, 041101 (2018).




Performance of the Hybrid Model
for a Simple Test Case

Predicted - True
(d) High Error Knowledge-based Predictor

30 - |~ — J‘
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o e
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) Small Reservoir

30F
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20

10 :
: : ey
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. C)
Poor model + small reservoir combine

for surprisingly good predictions
\_ | ‘ ,

Ref: J. Pathak, A. Wikner, R. Fussell, S. Chandra, B.R. Hunt, M. Girvan, and E. Ott, "Hybrid forecasting of chaotic
processes: using machine learning in conjunction with a knowledge-based model." Chaos, 28, 041101 (2018).




Can we use the hybrld A NEW YORK TIMES BUSINESS BESTSELLER

“As entertaining and thought-provoking as The Tipping Point by

. Malcolm Gladwell. . . . The Wisdom of Crowds ranges far and wide.”
scheme to combine many e Bowon Glabe
ML approaches? l
THE W|SDOM

AAELTLE

 “Wisdom of crowds”: notion that O ch(ﬁo W D S

large groups of individuals make high

qguality collective judgements J A M E S
* Requires individuals to reach decisions

independently for quality judgements S U R O W I E C K I

° HOW does thls notlon apply tO WITH A NEW AFTERWORD BY THE AUTHOR
ensembles of machines?




Conclusions

Reservoir Computing (RC) provides a promising method for predicting
complex time series, harnessing the chaos and complexity within the
reservoir

A parallel RC scheme makes prediction of very large systems feasible

A hybrid scheme that couple alternate forecasting with the reservoir
offers further, often dramatic, improvements

Hybrid method may help reveal the strengths and weaknesses of ML
and alternate models, leading to improvements in both

Open and exciting questions remain about how to scale this to
ensembles and layers of coupled machines
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