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Introduc:on

• Main	ques.on:	How	can	we	predict	the	future	of	some	
complex	:me	series	based	on	past	history?	

• Applica.ons:	Weather	and	climate	forecas:ng,	stock	market	
predic:on,	social	media	behaviors,	living	systems,	and	more	

• Hybrid	Approach:	Combine	ar:ficial	intelligence/machine	
learning	with	mathema:cal	modeling



What	kinds	of	systems	are	hard	to	predict?







Ques.on:	What	makes	systems	like	the	weather	
hard	to	predict?

Answer:	Chaos



• Sensi:vity	to	ini:al	condi:ons,	i.e.	the	“bu#erfly	effect”	

• Lyapunov	2me	=	:me	over	which	the	distance	between	ini:ally	close	
increases	by	a	factor	of	e	(2.78128…)	

• Long	term	predic:on	is	impossible	even	though	system	is	determinis2c	

• Behavior	can	appear	random	in	the	long	term

Features	of	Chaos

2	ini:al	condi:ons	
(yellow	and	red)	start	
close	together



Stochas.c	systems	are	also	hard	to	predict



How	can	machine	learning	help	us	
predict	these	systems?



hTps://blogs.oracle.com/bigdata/difference-ai-machine-learning-deep-learning

RESERVOIR COMPUTING
An alternate type of artificial neural 
network for ML

Ar.ficial	Neural	Networks:	A	kind	of	machine	learning	approach	that	uses	
networks	of	neuron-like	units	to	process	informa:on	

Background:	Ar.ficial	Intelligence	and	Machine	Learning

https://blogs.oracle.com/bigdata/difference-ai-machine-learning-deep-learning


• Informa:on	processed	through	successive	layers	of	neuron-like	units.	Primarily	
feed-forward	architecture.	

• Deeper	layers	perform	more	sophis:cated	informa:on	processing.	

• Weights	between	the	layers	are	trained	so	that	the	input	matches	the	desired	
output	for	a	set	of	training	data.	Large	amounts	of	training	data	needed.			

• Great	for	classifica:on	tasks,	but	not	as	good	for	predic:ng	:me	evolu:on	

• Feedback	loops	can	be	added	to	give	the	system	memory	but	these	make	
training	the	weights	much	harder	and	some:mes	impossible

Deep	Learning

Image	by	Lucy	Reading-Ikkanda	
Quanta	Magazine



Reservoir	Compu:ng
• Provides	a	way	to	train	Recurrent	Neural	Networks	

• Independently	introduced	by	Jaeger	(2001),	and	Maass	et	al.	
(2002).	

• Main	component	is	a	very	high-dimensional	system,	called	
the	reservoir.		

• The	reservoir	provides	a	rich	repository	of	dynamics.	With	
training	it	offers	a	“universal”	dynamical	system	

• Amenable	to	simple	hardware	implementa:ons



Reservoir	Compu:ng
Reservoir:	Recurrent	Ar:ficial	Neural	Network,	
capable	of	rich	dynamics

Reservoir

Input:	Input	through	fed	into	reservoir	
through	fixed,	random	connec:ons

Output:	Output	weights	are	fit	to	give	
the	best	outputs	for	the	training	data

Key	advantage:	Training	is	simple	and	efficient	
because	only	output	weights	are	adjusted

Output		
Layer

u’(t+Δt) 

Input		
Layer

u(t) 

• neuron-like	units	
• random,	sparse	

connec:ons	
• internal	firing	

dynamics
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K[u(t)]). This feature implies that reservoir computers,
as well as the reservoir-based hybrid are insensitive to the
specific reservoir implementation. In this paper, our illus-
trative implementation of the reservoir computer uses an
artificial neural network for the realization of the reser-
voir. We mention, however, that alternative implemen-
tation strategies such as utilizing nonlinear optical de-
vices12–14 and Field Programmable Gate Arrays15 can
also be used to construct the reservoir component of our
hybrid scheme (Fig. 2) and o↵er potential advantages,
particularly with respect to speed.

A. Reservoir-Only and Hybrid Implementations

Here we consider that the high-dimensional reservoir is
implemented by a large, low degree Erdős-Rènyi network
of Dr nonlinear, neuron-like units in which the network is
described by an adjacency matrix A (we stress that the
following implementations are somewhat arbitrary, and
are intended as illustrating typical results that might be
expected). The network is constructed to have an av-
erage degree denoted by hdi, and the nonzero elements
of A, representing the edge weights in the network, are
initially chosen independently from the uniform distri-
bution over the interval [�1, 1]. All the edge weights in
the network are then uniformly scaled via multiplication
of the adjacency matrix by a constant factor to set the
largest magnitude eigenvalue of the matrix to a quan-
tity ⇢, which is called the ‘spectral radius’ of A. The
state of the reservoir, given by the vector r(t), consists
of the components rj for 1  j  Dr where rj(t) denotes
the scalar state of the jth node in the network. When
evaluating prediction based purely on a reservoir system
alone, the reservoir is coupled to theM dimensional input
through a Dr ⇥M dimensional matrix Win, such that in
Eq. (2) R̂in [u(t)] = Winu(t), and each row of the matrix
Win has exactly one randomly chosen nonzero element.
Each nonzero element of the matrix is independently cho-
sen from the uniform distribution on the interval [��,�].
We choose the hyperbolic tangent function for the form
of the nonlinearity at the nodes, so that the specific train-
ing phase equation for our reservoir setup corresponding
to Eq. (2) is

r(t+�t) = tanh [Ar(t) +Winu(t)] , (7)

where the hyperbolic tangent applied on a vector is de-
fined as the vector whose components are the hyperbolic
tangent function acting on each element of the argument
vector individually.

We choose the form of the output function to be
R̂out(r,p) = Woutr?, in which the output parameters
(previously symbolically represented by p) will hence-
forth be take to be the elements of the matrix Wout,
and the vector r? is defined such that r?

j
equals rj for

odd j, and equals r2
j

for even j (it was empirically
found that this choice of r? works well for our exam-
ples in both Sec. IV and Sec. V, see also9,19). We

run the reservoir for �T  t  0 with the switch in
Fig. 1 in the ‘Training’ position. We then minimizeP

T/�t

m=1 k u(�m�t)�ũR(�m�t)k2 with respect toWout,
where ũR is now Woutr?. Since ũR depends linearly on
the elements ofWout, this minimization is a standard lin-
ear regression problem, and we use Tikhonov regularized
linear regression20. We denote the regularization param-
eter in the regression by � and employ a small positive
value of � to prevent over fitting of the training data.
Once the output parameters (the matrix elements of

Wout) are determined, we run the system in the configu-
ration depicted in Fig. 1 with the switch in the ‘Predic-
tion’ position according to the equations,

ũR(t) = Woutr
?(t) (8)

r(t+�t) = tanh [Ar(t) +WinũR(t)] , (9)

corresponding to Eq. (3). Here ũR(t) denotes the predic-
tion of u(t) for t > 0 made by the reservoir-only model.
Next, we describe the implementation of the hybrid

prediction scheme. The reservoir component of our hy-
brid scheme is implemented in the same fashion as in the
reservoir-only model given above. In the training phase
for �T < t  0, when the switch in Fig. 2 is in the
‘Training’ position, the specific form of Eq. (4) used is
given by

r(t+�t) = tanh


Ar(t) +Win

✓
K [u(t)]
u(t)

◆�
(10)

As earlier, we choose the matrix Win (which is now
Dr ⇥ (2M) dimensional) to have exactly one nonzero el-
ement in each row. The nonzero elements are indepen-
dently chosen from the uniform distribution on the inter-
val [��,�]. Each nonzero element can be interpreted to
correspond to a connection to a particular reservoir node.
These nonzero elements are randomly chosen such that
a fraction � of the reservoir nodes are connected exclu-
sively to the raw input u(t) and the remaining fraction
are connected exclusively to the the output of the model
based predictor K[u(t)].

Similar to the reservoir-only case, we choose the form
of the output function to be

Ĥout [K [u(t��t)] , r(t),p] = Wout

✓
K [u(t��t)]

r?(t)

◆
,

(11)

Where, as in the reservoir-only case, Wout now plays the
role of p. Again, as in the reservoir-only case, Wout is
determined via Tikhonov regularized regression.

In the prediction phase for t > 0, when the switch in
Fig. 2 is in position labeled ‘Prediction’, the input u(t)
is replaced by the output at the previous time step and
the equation analogous to Eq. (6) is given by,

ũH(t) = Wout

✓
K [u(t)]
r?(t)

◆
, (12)

r(t+�t) = tanh


Ar(t) +Win

✓
K [ũH ]
ũH

◆�
. (13)

Reservoir	Dynamics:



Predic:ng	mul:ple	:me	steps	forward

In	predic:on	mode,	the	output	of	the	
reservoir	is	fed	back	in	as	input
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K[u(t)]). This feature implies that reservoir computers,
as well as the reservoir-based hybrid are insensitive to the
specific reservoir implementation. In this paper, our illus-
trative implementation of the reservoir computer uses an
artificial neural network for the realization of the reser-
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tation strategies such as utilizing nonlinear optical de-
vices12–14 and Field Programmable Gate Arrays15 can
also be used to construct the reservoir component of our
hybrid scheme (Fig. 2) and o↵er potential advantages,
particularly with respect to speed.
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Here we consider that the high-dimensional reservoir is
implemented by a large, low degree Erdős-Rènyi network
of Dr nonlinear, neuron-like units in which the network is
described by an adjacency matrix A (we stress that the
following implementations are somewhat arbitrary, and
are intended as illustrating typical results that might be
expected). The network is constructed to have an av-
erage degree denoted by hdi, and the nonzero elements
of A, representing the edge weights in the network, are
initially chosen independently from the uniform distri-
bution over the interval [�1, 1]. All the edge weights in
the network are then uniformly scaled via multiplication
of the adjacency matrix by a constant factor to set the
largest magnitude eigenvalue of the matrix to a quan-
tity ⇢, which is called the ‘spectral radius’ of A. The
state of the reservoir, given by the vector r(t), consists
of the components rj for 1  j  Dr where rj(t) denotes
the scalar state of the jth node in the network. When
evaluating prediction based purely on a reservoir system
alone, the reservoir is coupled to theM dimensional input
through a Dr ⇥M dimensional matrix Win, such that in
Eq. (2) R̂in [u(t)] = Winu(t), and each row of the matrix
Win has exactly one randomly chosen nonzero element.
Each nonzero element of the matrix is independently cho-
sen from the uniform distribution on the interval [��,�].
We choose the hyperbolic tangent function for the form
of the nonlinearity at the nodes, so that the specific train-
ing phase equation for our reservoir setup corresponding
to Eq. (2) is

r(t+�t) = tanh [Ar(t) +Winu(t)] , (7)

where the hyperbolic tangent applied on a vector is de-
fined as the vector whose components are the hyperbolic
tangent function acting on each element of the argument
vector individually.

We choose the form of the output function to be
R̂out(r,p) = Woutr?, in which the output parameters
(previously symbolically represented by p) will hence-
forth be take to be the elements of the matrix Wout,
and the vector r? is defined such that r?

j
equals rj for

odd j, and equals r2
j

for even j (it was empirically
found that this choice of r? works well for our exam-
ples in both Sec. IV and Sec. V, see also9,19). We

run the reservoir for �T  t  0 with the switch in
Fig. 1 in the ‘Training’ position. We then minimizeP
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m=1 k u(�m�t)�ũR(�m�t)k2 with respect toWout,
where ũR is now Woutr?. Since ũR depends linearly on
the elements ofWout, this minimization is a standard lin-
ear regression problem, and we use Tikhonov regularized
linear regression20. We denote the regularization param-
eter in the regression by � and employ a small positive
value of � to prevent over fitting of the training data.
Once the output parameters (the matrix elements of

Wout) are determined, we run the system in the configu-
ration depicted in Fig. 1 with the switch in the ‘Predic-
tion’ position according to the equations,

ũR(t) = Woutr
?(t) (8)
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corresponding to Eq. (3). Here ũR(t) denotes the predic-
tion of u(t) for t > 0 made by the reservoir-only model.
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for �T < t  0, when the switch in Fig. 2 is in the
‘Training’ position, the specific form of Eq. (4) used is
given by
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As earlier, we choose the matrix Win (which is now
Dr ⇥ (2M) dimensional) to have exactly one nonzero el-
ement in each row. The nonzero elements are indepen-
dently chosen from the uniform distribution on the inter-
val [��,�]. Each nonzero element can be interpreted to
correspond to a connection to a particular reservoir node.
These nonzero elements are randomly chosen such that
a fraction � of the reservoir nodes are connected exclu-
sively to the raw input u(t) and the remaining fraction
are connected exclusively to the the output of the model
based predictor K[u(t)].

Similar to the reservoir-only case, we choose the form
of the output function to be

Ĥout [K [u(t��t)] , r(t),p] = Wout

✓
K [u(t��t)]

r?(t)

◆
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(11)

Where, as in the reservoir-only case, Wout now plays the
role of p. Again, as in the reservoir-only case, Wout is
determined via Tikhonov regularized regression.

In the prediction phase for t > 0, when the switch in
Fig. 2 is in position labeled ‘Prediction’, the input u(t)
is replaced by the output at the previous time step and
the equation analogous to Eq. (6) is given by,
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◆
, (12)

r(t+�t) = tanh


Ar(t) +Win

✓
K [ũH ]
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variables of dynamical systems the reservoir computer is
used in two di↵erent configurations. One of the config-
urations we call the ‘training’ phase, and the other one
we called the ‘prediction’ phase. In the training phase,
the reservoir is configured according to Fig. 1 with the
switch in the position labeled ‘Training’. In this phase,
the reservoir evolves from t = �T to t = 0 according to
the equation,

r(t+�t) = ĜR

h
R̂in [u(t)] , r(t)

i
, (2)

where the nonlinear function ĜR and the (usually lin-
ear) function R̂in depend on the choice of the reservoir
implementation. Next, we make a particular choice of the
parameters p such that the output function R̂out [r(t),p]
satisfies,

R̂out [r(t),p] ⇡ u(t),

for �T < t  0. We achieve this by minimizing the error
between ũR(t) = R̂out [r(t),p] and u(t) for �T < t  0
using a suitable error metric and optimization algorithm
on the adjustable parameter vector p.

In the prediction phase, for t � 0, the switch is placed
in position labeled ‘Prediction’ indicated in Fig. 1. The
reservoir now evolves autonomously with a feedback loop
according to the equation,

r(t+�t) = ĜR

h
R̂in [ũR(t)] , r(t)

i
, (3)

where, ũR(t) = R̂out [r(t),p] is taken as the prediction
from this reservoir-only approach. It has been shown7

that this procedure can successfully generate a time se-
ries ũR(t) that approximates the true state u(t) for t > 0.
Thus ũR(t) is our reservoir-based prediction of the evo-
lution of u(t). If, as assumed henceforth, the dynamical
system being predicted is chaotic, the exponential diver-
gence of initial conditions in the dynamical system im-
plies that any prediction scheme will only be able to yield
an accurate prediction for a limited amount of time.

C. Hybrid Scheme

The hybrid approach we propose combines both the
knowledge-based model and the reservoir-only model.
Our hybrid approach is outlined in the schematic dia-
gram shown in Fig. 2.

As in the reservoir-only model, the hybrid scheme has
two phases, the training phase and the prediction phase.
In the training phase (with the switch in position la-
beled ‘Training’ in Fig. 2), the training data u(t) from
t = �T to t = 0 is fed into both the knowledge-based
predictor and the reservoir. At each time t, the output
of the knowledge-based predictor is the one-step ahead
prediction K [u(t)]. The reservoir evolves according to
the equation

Based
Knowledge-

Model

Input Layer
Output Layer

Training

Prediction

Reservoir

ngaining

onPredictionPrediction

FIG. 2. Schematic diagram of the hybrid prediction setup.

r(t+�t) = ĜH

h
r(t), Ĥin [K [u(t)] ,u(t)]

i
(4)

for �T  t  0, where the (usually linear) function Ĥin

couples the reservoir network with the inputs to the reser-
voir, in this case u(t) and K [u(t)]. As earlier, we modify
a set of adjustable parameters p in a predefined output
function so that

Ĥout [K [u(t��t)] , r(t),p] ⇡ u(t) (5)

for �T < t  0, which is achieved by minimizing
the error between the right-hand side and the left-hand
side of Eq. (5), as discussed earlier (Sec. II B) for the
reservoir-only approach. Note that both the knowledge-
based model and the reservoir feed into the output layer
(Eq. (5) and Fig. 2) so that the training can be thought of
as optimally deciding on how to weight the information
from the knowledge-based and reservoir components.
For the prediction phase (the switch is placed in the po-

sition labeled ‘Prediction’ in Fig. 2) the feedback loop is
closed allowing the system to evolve autonomously. The
dynamics of the system will then be given by

r(t+�t) = ĜH

h
r(t), Ĥin [K [ũH(t)] , ũH(t)]

i
, (6)

where ũH(t) = Ĥout [K [ũH(t��t)] , r(t),p], is the pre-
diction of the prediction of the hybrid system.

III. IMPLEMENTATION

In this section we provide details of our specific imple-
mentation and discuss the prediction performance met-
rics we use to assess and compare the various prediction
schemes. Our implementation of the reservoir computer
closely follows Ref.7. Note that, in the reservoir training,
no knowledge of the dynamics and details of the reser-
voir system is used (this contrasts with other machine
learning techniques10): only the �T  t  0 training
data is used (u(t), r(t), and, in the case of the hybrid,
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To illustrate the hybrid scheme, we focus on a particu-
lar type of machine learning known as ‘reservoir comput-
ing’4–6, which has been previously applied to the predic-
tion of low dimensional systems7 and, more recently, to
the prediction of large spatiotemporal chaotic systems8,9.
We emphasize that, while our illustration is for reservoir
computing with a reservoir based on an artificial neu-
ral network, we view the results as a general test of the
hybrid approach. As such, these results should be rel-
evant to other versions of machine learning10 (such as
Long Short-Term Memory networks11), as well as reser-
voir computers in which the reservoir is implemented by
various physical means (e.g., electro-optical schemes12–14

or Field Programmable Gate Arrays15) A particularly
dramatic example illustrating the e↵ectiveness of the hy-
brid approach is shown in Figs. 7(d,e,f) in which, when
acting alone, both the knowledge-based predictor and the
reservoir machine learning predictor give fairly worthless
results (prediction time of only a fraction of a Lyapunov
time), but, when the same two systems are combined in
the hybrid scheme, good predictions are obtained for a
substantial duration of about 4 Lyapunov times. (By a
‘Lyapunov time’ we mean the typical time required for
an e-fold increase of the distance between two initially
close chaotic orbits; see Sec. IV and V.)

The rest of this paper is organized as follows. In Sec. II,
we provide an overview of our methods for prediction by
using a knowledge-based model and for prediction by ex-
clusively using a reservoir computing model (henceforth
referred to as the reservoir-only model). We then de-
scribe the hybrid scheme that combines the knowledge-
based model with the reservoir-only model. In Sec. III,
we describe our specific implementation of the reser-
voir computing scheme and the proposed hybrid scheme
using a recurrent-neural-network implementation of the
reservoir computer. In Sec. IV and V, we demon-
strate our hybrid prediction approach using two exam-
ples, namely, the low-dimensional Lorenz system16 and
the high dimensional, spatiotemporal chaotic Kuramoto-
Sivashinsky system17,18.

II. PREDICTION METHODS

Input Layer

Training

Prediction

Reservoir

Output Layer

PredictionPrediction

FIG. 1. Schematic diagram of reservoir-only prediction setup.

We consider a dynamical system for which there is
available a time series of a set of M measurable state-
dependent quantities, which we represent as the M di-
mensional vector u(t). As discussed earlier, we propose a
hybrid scheme to make predictions of the dynamics of the
system by combining an approximate knowledge-based
prediction via an approximate model with a purely data-
driven prediction scheme that uses machine learning. We
will compare predictions made using our hybrid scheme
with the predictions of the approximate knowledge-based
model alone and predictions made by exclusively using
the reservoir computing model.

A. Knowledge-Based Model

We obtain predictions from the approximate
knowledge-based model acting alone assuming that
the knowledge-based model is capable of forecasting u(t)
for t > 0 based on an initial condition u(0) and possibly
recent values of u(t) for t < 0. For notational use in
our hybrid scheme (Sec. II C), we denote integration of
the knowledge-based model forward in time by a time
duration �t as,

uK(t+�t) = K [u(t)] ⇡ u(t+�t). (1)

We emphasize that the knowledge-based one-step-ahead
predictor K is imperfect and may have substantial un-
wanted error. In our test examples in Secs. IV and V we
consider prediction of continuous-time systems and take
the prediction system time step �t to be small compared
to the typical time scale over which the continuous-time
system changes. We note that while a single prediction
time step (�t) is small, we are interested in predicting
for a large number of time steps.

B. Reservoir-Only Model

For the machine learning approach, we assume the
knowledge of u(t) for times t from �T to 0. This data
will be used to train the machine learning model for the
purpose of making predictions of u(t) for t > 0. In par-
ticular we use a reservoir computer, described as follows.

A reservoir computer (Fig. 1) is constructed with an
artificial high dimensional dynamical system, known as
the reservoir whose state is represented by the Dr di-
mensional vector r(t), Dr � M . We note that ideally
the forecasting accuracy of a reservoir-only prediction
model increases with Dr, but that Dr is typically lim-
ited by computational cost considerations. The reser-
voir is coupled to an input through an Input-to-Reservoir
coupling R̂in [u(t)] which maps the M -dimensional input
vector, u, at time t, to each of the Dr reservoir state
variables. The output is defined through a Reservoir-to-
Output coupling R̂out [r(t),p], where p is a large set of
adjustable parameters. In the task of prediction of state



Experimental	evidence:	Avalanche	size	and	duration	
distributions	follow	power-laws	(first	observed	in	
cultured	neurons	by	Beggs	and	Plenz,	2003)

Critical	Dynamics	in	Networks	of	Neurons
Size	distribution:	

slope	-3/2

Duration	distribution:	

slope	-2

Q:	Should	the	reservoir	be	critical?



Information	processing	is	maximized	for	critical	avalanching	dynamics:	
Maximized	dynamic	range	Δ	at	the	critical	point.	(Kinouchi	and	Copelli	
2006,	Shew	and	Plenz	2013)	

Q:	Should	the	reservoir	be	critical?

Dynamic	range:

A: Spectral radius near 1 (i.e. critical) gives good 
results, but we see robust performance over a wide 

range of values.
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	Reservoir	doesn’t	have	to	be	an	
Ar:ficial	Neural	Network

• Input-output	system	
• Complex	repository	of	dynamics	
• Internal	memory

Reservoir	requirements

generic	
reservoir
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variables of dynamical systems the reservoir computer is
used in two di↵erent configurations. One of the config-
urations we call the ‘training’ phase, and the other one
we called the ‘prediction’ phase. In the training phase,
the reservoir is configured according to Fig. 1 with the
switch in the position labeled ‘Training’. In this phase,
the reservoir evolves from t = �T to t = 0 according to
the equation,

r(t+�t) = ĜR

h
R̂in [u(t)] , r(t)

i
, (2)

where the nonlinear function ĜR and the (usually lin-
ear) function R̂in depend on the choice of the reservoir
implementation. Next, we make a particular choice of the
parameters p such that the output function R̂out [r(t),p]
satisfies,

R̂out [r(t),p] ⇡ u(t),

for �T < t  0. We achieve this by minimizing the error
between ũR(t) = R̂out [r(t),p] and u(t) for �T < t  0
using a suitable error metric and optimization algorithm
on the adjustable parameter vector p.

In the prediction phase, for t � 0, the switch is placed
in position labeled ‘Prediction’ indicated in Fig. 1. The
reservoir now evolves autonomously with a feedback loop
according to the equation,

r(t+�t) = ĜR

h
R̂in [ũR(t)] , r(t)

i
, (3)

where, ũR(t) = R̂out [r(t),p] is taken as the prediction
from this reservoir-only approach. It has been shown7

that this procedure can successfully generate a time se-
ries ũR(t) that approximates the true state u(t) for t > 0.
Thus ũR(t) is our reservoir-based prediction of the evo-
lution of u(t). If, as assumed henceforth, the dynamical
system being predicted is chaotic, the exponential diver-
gence of initial conditions in the dynamical system im-
plies that any prediction scheme will only be able to yield
an accurate prediction for a limited amount of time.

C. Hybrid Scheme

The hybrid approach we propose combines both the
knowledge-based model and the reservoir-only model.
Our hybrid approach is outlined in the schematic dia-
gram shown in Fig. 2.

As in the reservoir-only model, the hybrid scheme has
two phases, the training phase and the prediction phase.
In the training phase (with the switch in position la-
beled ‘Training’ in Fig. 2), the training data u(t) from
t = �T to t = 0 is fed into both the knowledge-based
predictor and the reservoir. At each time t, the output
of the knowledge-based predictor is the one-step ahead
prediction K [u(t)]. The reservoir evolves according to
the equation

Based
Knowledge-

Model

Input Layer
Output Layer

Training

Prediction

Reservoir

ngaining

onPredictionPrediction

FIG. 2. Schematic diagram of the hybrid prediction setup.

r(t+�t) = ĜH

h
r(t), Ĥin [K [u(t)] ,u(t)]

i
(4)

for �T  t  0, where the (usually linear) function Ĥin

couples the reservoir network with the inputs to the reser-
voir, in this case u(t) and K [u(t)]. As earlier, we modify
a set of adjustable parameters p in a predefined output
function so that

Ĥout [K [u(t��t)] , r(t),p] ⇡ u(t) (5)

for �T < t  0, which is achieved by minimizing
the error between the right-hand side and the left-hand
side of Eq. (5), as discussed earlier (Sec. II B) for the
reservoir-only approach. Note that both the knowledge-
based model and the reservoir feed into the output layer
(Eq. (5) and Fig. 2) so that the training can be thought of
as optimally deciding on how to weight the information
from the knowledge-based and reservoir components.
For the prediction phase (the switch is placed in the po-

sition labeled ‘Prediction’ in Fig. 2) the feedback loop is
closed allowing the system to evolve autonomously. The
dynamics of the system will then be given by

r(t+�t) = ĜH

h
r(t), Ĥin [K [ũH(t)] , ũH(t)]

i
, (6)

where ũH(t) = Ĥout [K [ũH(t��t)] , r(t),p], is the pre-
diction of the prediction of the hybrid system.

III. IMPLEMENTATION

In this section we provide details of our specific imple-
mentation and discuss the prediction performance met-
rics we use to assess and compare the various prediction
schemes. Our implementation of the reservoir computer
closely follows Ref.7. Note that, in the reservoir training,
no knowledge of the dynamics and details of the reser-
voir system is used (this contrasts with other machine
learning techniques10): only the �T  t  0 training
data is used (u(t), r(t), and, in the case of the hybrid,

2

To illustrate the hybrid scheme, we focus on a particu-
lar type of machine learning known as ‘reservoir comput-
ing’4–6, which has been previously applied to the predic-
tion of low dimensional systems7 and, more recently, to
the prediction of large spatiotemporal chaotic systems8,9.
We emphasize that, while our illustration is for reservoir
computing with a reservoir based on an artificial neu-
ral network, we view the results as a general test of the
hybrid approach. As such, these results should be rel-
evant to other versions of machine learning10 (such as
Long Short-Term Memory networks11), as well as reser-
voir computers in which the reservoir is implemented by
various physical means (e.g., electro-optical schemes12–14

or Field Programmable Gate Arrays15) A particularly
dramatic example illustrating the e↵ectiveness of the hy-
brid approach is shown in Figs. 7(d,e,f) in which, when
acting alone, both the knowledge-based predictor and the
reservoir machine learning predictor give fairly worthless
results (prediction time of only a fraction of a Lyapunov
time), but, when the same two systems are combined in
the hybrid scheme, good predictions are obtained for a
substantial duration of about 4 Lyapunov times. (By a
‘Lyapunov time’ we mean the typical time required for
an e-fold increase of the distance between two initially
close chaotic orbits; see Sec. IV and V.)

The rest of this paper is organized as follows. In Sec. II,
we provide an overview of our methods for prediction by
using a knowledge-based model and for prediction by ex-
clusively using a reservoir computing model (henceforth
referred to as the reservoir-only model). We then de-
scribe the hybrid scheme that combines the knowledge-
based model with the reservoir-only model. In Sec. III,
we describe our specific implementation of the reser-
voir computing scheme and the proposed hybrid scheme
using a recurrent-neural-network implementation of the
reservoir computer. In Sec. IV and V, we demon-
strate our hybrid prediction approach using two exam-
ples, namely, the low-dimensional Lorenz system16 and
the high dimensional, spatiotemporal chaotic Kuramoto-
Sivashinsky system17,18.

II. PREDICTION METHODS

Input Layer

Training

Prediction

Reservoir

Output Layer

PredictionPrediction

FIG. 1. Schematic diagram of reservoir-only prediction setup.

We consider a dynamical system for which there is
available a time series of a set of M measurable state-
dependent quantities, which we represent as the M di-
mensional vector u(t). As discussed earlier, we propose a
hybrid scheme to make predictions of the dynamics of the
system by combining an approximate knowledge-based
prediction via an approximate model with a purely data-
driven prediction scheme that uses machine learning. We
will compare predictions made using our hybrid scheme
with the predictions of the approximate knowledge-based
model alone and predictions made by exclusively using
the reservoir computing model.

A. Knowledge-Based Model

We obtain predictions from the approximate
knowledge-based model acting alone assuming that
the knowledge-based model is capable of forecasting u(t)
for t > 0 based on an initial condition u(0) and possibly
recent values of u(t) for t < 0. For notational use in
our hybrid scheme (Sec. II C), we denote integration of
the knowledge-based model forward in time by a time
duration �t as,

uK(t+�t) = K [u(t)] ⇡ u(t+�t). (1)

We emphasize that the knowledge-based one-step-ahead
predictor K is imperfect and may have substantial un-
wanted error. In our test examples in Secs. IV and V we
consider prediction of continuous-time systems and take
the prediction system time step �t to be small compared
to the typical time scale over which the continuous-time
system changes. We note that while a single prediction
time step (�t) is small, we are interested in predicting
for a large number of time steps.

B. Reservoir-Only Model

For the machine learning approach, we assume the
knowledge of u(t) for times t from �T to 0. This data
will be used to train the machine learning model for the
purpose of making predictions of u(t) for t > 0. In par-
ticular we use a reservoir computer, described as follows.

A reservoir computer (Fig. 1) is constructed with an
artificial high dimensional dynamical system, known as
the reservoir whose state is represented by the Dr di-
mensional vector r(t), Dr � M . We note that ideally
the forecasting accuracy of a reservoir-only prediction
model increases with Dr, but that Dr is typically lim-
ited by computational cost considerations. The reser-
voir is coupled to an input through an Input-to-Reservoir
coupling R̂in [u(t)] which maps the M -dimensional input
vector, u, at time t, to each of the Dr reservoir state
variables. The output is defined through a Reservoir-to-
Output coupling R̂out [r(t),p], where p is a large set of
adjustable parameters. In the task of prediction of state



Reservoir	Compu:ng	for	Predic:ng	
Spa:otemporally	Chao:c	Systems

• Spa.otemporal	Chaos:	PaTern	evolves	in	space	and	:me.	
Time	evolu:on	is	chao:c.	Example	weather.	

• Our	test	system:	Kuramoto	Sivasinshy	(KS)	system,	
designed	to	model	the	chao:c	propaga:on	of	waves	in	
space	and	:me

Sp
ac
e

Time

6

Parameter Value Parameter Value

⇢ 0.4 T 100

hdi 3 � 0.5

� 0.15 ⌧ 250

�t 0.1 ⇠ 10

TABLE I. Reservoir parameters ⇢, hdi, �, �t, training time
T , hybrid parameter �, and evaluation parameters ⌧ , ⇠ for
the Lorenz system prediction.

Eqs. (15). The vertical dashed lines in Fig. 3 indicate
the valid time tv (Sec. III C) at which E(t) (Eq. (14))
first reaches the value f = 0.4. The valid time determi-
nation for this example with ✏ = 0.05 and Dr = 500 is
illustrated in Fig. 4. Notice that we get low prediction
error for about 10 Lyapunov times.

-20
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-20
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1086420 12 14 16 18 20

FIG. 3. Prediction of the Lorenz system using the hybrid
prediction setup. The blue line shows the true state of the
Lorenz system and the red dashed line shows the prediction.
Prediction begins at t = 0. The vertical black dashed line
marks the point where this prediction is no longer considered
valid by the valid time metric with f = 0.4. The error in the
approximate model used in the knowledge-based component
of the hybrid scheme is ✏ = 0.05.

1086420 12 14 16 18 20

0.5

1.0

1.5

0

FIG. 4. Normalized error E(t) versus time of the Lorenz pre-
diction trial shown in Fig. 3. The prediction error remains
below the defined threshold (E(t) < 0.4) for about 12 Lya-
punov times.

The red upper curve in Fig. 5 shows the dependence on
reservoir size Dr of results for the median valid time (in
units of Lyapunov time, �maxt, and with f = 0.4) of the
predictions from a hybrid scheme using a reservoir system
combined with our imperfect model with an error param-
eter of ✏ = 0.05. The error bars span the first and third
quartiles of our trials which are generated as described in
Sec. III C. The black middle curve in Fig. 5 shows the cor-

responding results for predictions using the reservoir-only
model. The blue lower curve in Fig. 5 shows the result for
prediction using only the ✏ = 0.05 imperfect knowledge-
based model (since this result does not depend on Dr,
the blue curve is horizontal and the error bars are the
same at each value of Dr). Note that, even though the
knowledge-based prediction alone is very bad, when used
in the hybrid, it results in a large prediction improvement
relative to the reservoir-only prediction. Moreover, this
improvement is seen for all values of the reservoir sizes
tested. Note also that the valid time for the hybrid with a
reservoir size of Dr = 50 is comparable to the valid time
for a reservoir-only scheme at Dr = 500. This suggests
that our hybrid method can substantially reduce reser-
voir computational expense even with a knowledge-based
model that has low predictive power on its own.
Fig. 6 shows the dependence of prediction performance

on the model error ✏ with the reservoir size held fixed
at Dr = 50. For the wide range of the error ✏ we have
tested, the hybrid performance is much better than either
its knowledge-based component alone or reservoir-only
component. Figures 5 and 6, taken together, suggest the
potential robustness of the utility of the hybrid approach.

FIG. 5. Reservoir size (Dr) dependence of the median valid
time using the hybrid prediction scheme (red upper plot), the
reservoir-only (black middle plot) and the knowledge-based
model only methods. The model error is fixed at ✏ = 0.05.
Since the knowledge based model (blue) does not depend on
Dr, its plot is a horizontal line. Error bars span the range
between the 1st and 3rd quartiles of the trials.

V. KURAMOTO-SIVASHINSKY EQUATIONS

In this example, we test how well our hybrid method,
using an inaccurate knowledge-based model combined
with a relatively small reservoir, can predict systems that
exhibit high dimensional spatiotemporal chaos. Specifi-
cally, we use simulated data from the one-dimensional
Kuramoto-Sivashinsky (KS) equation for y(x, t),

yt = �yyx � yxx � yxxxx (16)



True	State

RC	Predicted	State

Difference

#	of	Lyapunov	Times

Results

“True”	state	is	produced	
by	a	system	of	chao:c	
equa:ons.	

“Model-free”	predic.on:	
The	RC	only	receives	the	
simulated	data	from	those	
equa:ons.	It	doesn’t	know	
anything	about	the	
equa:ons	themselves

We	obtain	high	quality	
predic:ons	for	about	5	
mul:ples	of	the	Lyapunov	
:me.		

In	that	:me,	the		distance	
between	ini:ally	close	
trajectories	grows	by	a	factor	
of	about	150	(e5).

Ref: J. Pathak, B. Hunt, M. Girvan, Z. Lu, and E. Ott. Phys. Rev. Lett. (2018). 



True	State

RC	Predicted	State

Difference

#	of	Lyapunov	Times

Results

Ref: J. Pathak, B. Hunt, M. Girvan, Z. Lu, and E. Ott. Phys. Rev. Lett. (2018). 

No:ce	that	the	predicted	
state	looks	very	much	like	
the	true	state	even	amer	
the	predic:ons	become	
unreliable.	

The	“climate”	is	accurately	
captured	even	amer	the	
“forecast”	fails.	

See	Ed	OT’s	talk	on	Wednesday	morning	
Ref:	Pathak,	Lu,	Hunt,	Girvan,	and	OT.	Chaos	(2017)



True	State

RC	Predicted	State

Difference

#	of	Lyapunov	Times

Results

• Seems	to	capture	the	
climate	beTer	than	other	
model-free	methods	

• Simpler	to	implement	

• Not	prone	to	spurious	
results

Advantages	of	the	RC

Ref: J. Pathak, B. Hunt, M. Girvan, Z. Lu, and E. Ott. Phys. Rev. Lett. (2018). 



What	about	predic:ng	really	large	systems?

Typical	spa:otemporal	
systems,	like	the	weather,	
are	very	large.	How	do	we	
deal	with	them?



Solu:on:	Parallel	Reservoir	Compu:ng

Training	Mode Predic.on	Mode

output:	
(t+Δt	)	

next	step

input:		
:me	(t)	

Architecture:	Each	reservoir	takes	inputs	from	a	
spa2ally	local	neighborhood	and	predicts	a	subset	
of	its	neighborhood.	

Performance:	Using	model	systems,	we	have	shown	
this	scheme	is	highly	effec:ve	for	very	large	
systems.	

Next	challenge:	Real	weather	forecas:ng



What	about	predic:ng	stochas2c	systems?
A	simple	test	case:	Predic:ng	user	ac:vity	on	TwiTer

Ref: D. Darmon, J. Sylvester, M. Girvan, and W. Rand, “Predictability of User Behavior in Social Media: 
Bottom-Up v. Top-Down Modeling,”  International Conference on Social Computing (2013).



Predic:ng	User	
Ac:vity	on	TwiTer

2013-08-22 12:54:06 Is Your Gmail Social? How to Use Gmail Daily to Build an Engaged Community | Socially Sorted http://t.co/WVprF4bLPa via 
2013-08-22 13:11:22 Facebook's Embedded Posts Now Available to Everyone http://t.co/Cc0q3cSTt6
2013-08-22 13:14:06 The Credible Hulk http://t.co/q17VrcSdBs
2013-08-22 13:29:02 25 Things You Didn’t Know About Ninjas http://t.co/CcJz92sRyy
2013-08-22 13:32:59 Twitter Users: Revoke and Reestablish Third Party App Access Now http://t.co/qL9LbnGO6e via @ShellyKramer
2013-08-22 13:48:46 10 Brilliant Facebook Marketing Tactics to Increase Reach and Engagement http://t.co/Z4YsudlJ35 via @kathikruse
2013-08-22 14:17:11 Google Now Adds Cards for NCAA Football Scores, Concert Tickets, Car Rentals and More http://t.co/BG6Yz2zDyU
2013-08-22 15:18:03 What is the NSA Really Up To? [COMIC] http://t.co/hakoq1mFNX
2013-08-22 15:39:04 6 Things Every Good Business Blog MUST Have http://t.co/KRGzZRCrbm

Timestamp Tweet	Text

Sample	Data	for	One	User

http://t.co/Cc0q3cSTt6
http://t.co/q17VrcSdBs
http://t.co/CcJz92sRyy
http://t.co/qL9LbnGO6e
http://t.co/hakoq1mFNX
http://t.co/KRGzZRCrbm


0 1 0 1 1 1 0 1 1 1… …

Time

• Divide	:me	into	short	intervals	
(600s	=	10	minutes)	

• Discre:ze	ac:vity:	1	if	user	
tweeted	in	the	interval,	0	if	not	

• Can	we	predict	the	user’s	
ac:vity?	

• First	approach:	Start	by	trying	to	
predict	the	user’s	ac:vity	based	
only	on	his/her	past	ac:vity

Predic:ng	User	Ac:vity	on	TwiTer



Compare	Approaches
• Reservoir	Compu.ng	(RC)	

‣ “Top-down”:	Relaxed	from	very	complicated	dynamics	un:l	
maximum	predic:ve	capability	is	reached	

‣ Black-box,	hard	to	interpret	

• Causal	State	Modeling	(CSM)	(similar	to	hidden	markov	modeling):	

‣ Looks	at	the	user’s	past	N	steps	and	determines	probability	of	
twee:ng	in	the	next	:me	step,	based	on	previous	behavior	

‣ “BoTom-up”:	Aims	to	construct	the	simplest	predic:ve	model	

‣ Easy	to	interpret



• Build model for each user separately

• Training: 45 days

• Testing: 4 days

• Look back 10 steps

• Predict ahead 1 step

• Compare to “majority vote” baseline

Predic:ng	User	Ac:vity	on	TwiTer



Comparing “top-down” (RC) 
and “bottom-up” (CSM) 

approaches

• Both	methods	showed	strong	
improvements	in	predic:on	for	a	
subset	of	users	based	on	limited	
info	(the	user’s	own	previous	
history)	

• Average	improvement	of	the	two	
methods	was	about	the	same	

• For	some	users,	CSM	did	beTer,	
for	others	RC	did	beTer	

• Extensions:	we’re	working	on	
predic:on	schemes	that	also	take	
into	account	the	ac:vity	paTerns	
in	the	user’s	network	

• Challenge:	how	can	we	combine	
approaches?
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Ref: D. Darmon, J. Sylvester, M. Girvan, and W. Rand, “Predictability of User Behavior in Social Media: 
Bottom-Up v. Top-Down Modeling,”  International Conference on Social Computing (2013).



How	do	we	effec:vely	combine	approaches?

• Some:mes	we	want	to	combine	2	or	more	data-driven	
approaches,	like	the	“top-down”	and“bo#om-up”	
approaches	

• Other	:mes	we	have	knowledge	of	the	dynamics	(e.g.,	in	
weather)	and	we	want	to	combine	knowledge-based	
models	with	knowledge-free	(data-driven)	models	



Based
Knowledge-

Model

Input Layer
Output Layer

Training

Prediction

Reservoir

ngaining

onPredictionPrediction

x(t) x’(t+Δt) 
Alternate 
model(s)

Hybrid Architecture

• Input	is	fed	into	both	the	alternate	model(s)	and	the	reservoir	(through	
input	layer)	

• Output	from	the	alternate	model(s)	is	fed	into	the	reservoir	(through	
input	layer)	and	the	output	layer	

• Weights	in	the	output	layer	are	trained	to	maximize	predic:on	in	the	
training	data.		

Ref: J. Pathak, A. Wikner, R. Fussell, S. Chandra, B.R. Hunt, M. Girvan, and E. Ott, "Hybrid forecasting of chaotic 
processes: using machine learning in conjunction with a knowledge-based model." Chaos, 28, 041101 (2018).



Performance of the Hybrid Model 
for a Simple Test Case

(a) Low Error Knowledge-based Predictor

(b) Large Reservoir

(c) Hybrid (a+b)

(d) High Error Knowledge-based Predictor

(e) Small Reservoir

(f ) Hybrid (d+e)

Lo
w

 E
rr

o
r 

K
n

o
w

le
d

g
e

-b
as

ed
 M

o
d

el
 

an
d

 L
ar

g
e 

R
es

er
vo

ir

H
ig

h
 E

rr
o

r 
K

n
o

w
le

d
g

e
-b

as
ed

 M
o

d
el

 
an

d
 S

m
al

l R
es

er
vo

ir

#	of	Lyapunov	:mes

Good	model	+	large	reservoir	combine	
to	give	impressive	predic:ons	

Ref: J. Pathak, A. Wikner, R. Fussell, S. Chandra, B.R. Hunt, M. Girvan, and E. Ott, "Hybrid forecasting of chaotic 
processes: using machine learning in conjunction with a knowledge-based model." Chaos, 28, 041101 (2018).

Predicted	-	True
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Parameter Value Parameter Value

⇢ 0.4 T 100

hdi 3 � 0.5

� 0.15 ⌧ 250

�t 0.1 ⇠ 10

TABLE I. Reservoir parameters ⇢, hdi, �, �t, training time
T , hybrid parameter �, and evaluation parameters ⌧ , ⇠ for
the Lorenz system prediction.

Eqs. (15). The vertical dashed lines in Fig. 3 indicate
the valid time tv (Sec. III C) at which E(t) (Eq. (14))
first reaches the value f = 0.4. The valid time determi-
nation for this example with ✏ = 0.05 and Dr = 500 is
illustrated in Fig. 4. Notice that we get low prediction
error for about 10 Lyapunov times.

-20
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20

-20

0

20

20

40

1086420 12 14 16 18 20

FIG. 3. Prediction of the Lorenz system using the hybrid
prediction setup. The blue line shows the true state of the
Lorenz system and the red dashed line shows the prediction.
Prediction begins at t = 0. The vertical black dashed line
marks the point where this prediction is no longer considered
valid by the valid time metric with f = 0.4. The error in the
approximate model used in the knowledge-based component
of the hybrid scheme is ✏ = 0.05.

1086420 12 14 16 18 20

0.5

1.0

1.5

0

FIG. 4. Normalized error E(t) versus time of the Lorenz pre-
diction trial shown in Fig. 3. The prediction error remains
below the defined threshold (E(t) < 0.4) for about 12 Lya-
punov times.

The red upper curve in Fig. 5 shows the dependence on
reservoir size Dr of results for the median valid time (in
units of Lyapunov time, �maxt, and with f = 0.4) of the
predictions from a hybrid scheme using a reservoir system
combined with our imperfect model with an error param-
eter of ✏ = 0.05. The error bars span the first and third
quartiles of our trials which are generated as described in
Sec. III C. The black middle curve in Fig. 5 shows the cor-

responding results for predictions using the reservoir-only
model. The blue lower curve in Fig. 5 shows the result for
prediction using only the ✏ = 0.05 imperfect knowledge-
based model (since this result does not depend on Dr,
the blue curve is horizontal and the error bars are the
same at each value of Dr). Note that, even though the
knowledge-based prediction alone is very bad, when used
in the hybrid, it results in a large prediction improvement
relative to the reservoir-only prediction. Moreover, this
improvement is seen for all values of the reservoir sizes
tested. Note also that the valid time for the hybrid with a
reservoir size of Dr = 50 is comparable to the valid time
for a reservoir-only scheme at Dr = 500. This suggests
that our hybrid method can substantially reduce reser-
voir computational expense even with a knowledge-based
model that has low predictive power on its own.
Fig. 6 shows the dependence of prediction performance

on the model error ✏ with the reservoir size held fixed
at Dr = 50. For the wide range of the error ✏ we have
tested, the hybrid performance is much better than either
its knowledge-based component alone or reservoir-only
component. Figures 5 and 6, taken together, suggest the
potential robustness of the utility of the hybrid approach.

FIG. 5. Reservoir size (Dr) dependence of the median valid
time using the hybrid prediction scheme (red upper plot), the
reservoir-only (black middle plot) and the knowledge-based
model only methods. The model error is fixed at ✏ = 0.05.
Since the knowledge based model (blue) does not depend on
Dr, its plot is a horizontal line. Error bars span the range
between the 1st and 3rd quartiles of the trials.

V. KURAMOTO-SIVASHINSKY EQUATIONS

In this example, we test how well our hybrid method,
using an inaccurate knowledge-based model combined
with a relatively small reservoir, can predict systems that
exhibit high dimensional spatiotemporal chaos. Specifi-
cally, we use simulated data from the one-dimensional
Kuramoto-Sivashinsky (KS) equation for y(x, t),

yt = �yyx � yxx � yxxxx (16)

7

FIG. 6. Valid times for di↵erent values of model error (✏) with
f = 0.4. The reservoir size is fixed at Dr = 50. Plotted points
represent the median and error bars span the range between
the 1st and 3rd quartiles. The meaning of the colors is the
same as in Fig. 5. Since the reservoir only scheme (black)
does not depend on ✏, its plot is a horizontal line. Similar to
Fig. 5, the small reservoir alone cannot predict well for a long
time, but the hybrid model, which combines the inaccurate
knowledge-based model and the small reservoir performs well
across a broad range of ✏.

Our simulation calculates y(x, t) on a uniformly spaced
grid with spatially periodic boundary conditions such
that y(x, t) = y(x + L, t), with a periodicity length of
L = 35, a grid size of Q = 64 grid points (giving a in-
tergrid spacing of �x = L

Q
⇡ 0.547), and a sampling

time of �t = 0.25. For these parameters we found
that the maximum Lyapunov exponent, �max, is positive
(�max ⇡ 0.07), indicating that this system is chaotic. We
define a vector of y(x, t) values at each grid point as the
input to each of our predictors:

u(t) =


y

✓
L

Q
, t

◆
, y

✓
2L

Q
, t

◆
, . . . , y (L, t)

�T
. (17)

For our approximate knowledge-based predictor, we
use the same simulation method as the original
Kuramoto-Sivashinsky equations with an error param-
eter ✏ added to the coe�cient of the second derivative
term as follows,

yt = �yyx � (1 + ✏)yxx � yxxxx. (18)

For su�ciently small ✏, Eq. (18) corresponds to a very
accurate knowledge-based model of the true KS system,
which becomes less and less accurate as ✏ is increased.

Illustrations of our main result are shown in Figs. 7 and
8, where we use the parameters in Table II. In the top
panel of Fig. 7, we plot a computed solution of Eq. (16)
which we regard as the true dynamics of a system to
be predicted; the spatial coordinate x 2 [0, L] is plotted
vertically, the time in Lyapunov units (�maxt) is plotted
horizontally, and the value of y(x, t) is color coded with
the most positive and most negative y values indicated by
red and blue, respectively. Below this top panel are six

panels labeled (a-f) in which the color coded quantity is
the prediction error ỹ(x, t)�y(x, t) of di↵erent predictions
ỹ(x, t). In panels (a), (b) and (c), we consider a case (✏ =
0.01, Dr = 8000) where both the knowledge-based model
(panel (a)) and the reservoir-only predictor (panel (b))
are fairly accurate; panel (c) shows the hybrid prediction
error. In panels (d), (e), and (f), we consider a di↵erent
case (✏ = 0.1, Dr = 500) where both the knowledge-based
model (panel (d)) and the reservoir-only predictor (panel
(e)) are relatively inaccurate; panel (f) shows the hybrid
prediction error. In our color coding, low prediction error
corresponds to the green color. The vertical solid lines
denote the valid times for this run with f = 0.4.

Parameter Value Parameter Value

⇢ 0.4 T 5000

hdi 3 � 0.5

� 1.0 ⌧ 250

�t 0.25 ⇠ 10

TABLE II. Reservoir parameters ⇢, hdi, �, �t, training time
T , hybrid parameter �, and evaluation parameters ⌧ , ⇠ for
the KS system prediction.

We note from Figs. 7(a,b,c), that even when the
knowledge-based model prediction is valid for about as
long as the reservoir-only prediction, our hybrid scheme
can significantly outperform both its components. Ad-
ditionally, as in our Lorenz system example (Fig. 6
for ✏ & 0.2) we see from Figs. 7(d,e,f) that in the
parameter regimes where the KS reservoir-only model
and knowledge-based model both show very poor per-
formance, the hybrid of these low performing meth-
ods can still predict for a longer time than a much
more computationally expensive reservoir-only imple-
mentation (Fig. 7(b)).
This latter remarkable result is reinforced by Fig. 8(a),

which shows that even for very large error, ✏ = 1, such
that the model is totally ine↵ective, the hybrid of these
two methods is able to predict for a significant amount of
time using a relatively small reservoir. This implies that a
non-viable model can be made viable via the addition of a
reservoir component of modest size. Further Figs. 8(b,c)
show that even if one has a model that can outperform
the reservoir prediction, as is the case for ✏ = 0.01 for
most reservoir sizes, one can still benefit from a reservoir
using our hybrid technique.

VI. CONCLUSIONS

In this paper we present a method for the prediction
of chaotic dynamical systems that hybridizes reservoir
computing and knowledge-based prediction. Our main
results are:

1. Our hybrid technique consistently outperforms
its component reservoir-only or knowledge-based

KS	System

Imperfect	“model”



Performance of the Hybrid Model 
for a Simple Test Case

(a) Low Error Knowledge-based Predictor

(b) Large Reservoir

(c) Hybrid (a+b)

(d) High Error Knowledge-based Predictor

(e) Small Reservoir

(f ) Hybrid (d+e)
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#	of	Lyapunov	:mes

Poor	model	+	small	reservoir	combine	
for	surprisingly	good	predic:ons

Ref: J. Pathak, A. Wikner, R. Fussell, S. Chandra, B.R. Hunt, M. Girvan, and E. Ott, "Hybrid forecasting of chaotic 
processes: using machine learning in conjunction with a knowledge-based model." Chaos, 28, 041101 (2018).

Predicted	-	True



Can	we	use	the	hybrid	
scheme	to	combine	many	

ML	approaches?

• “Wisdom	of	crowds”:		no:on	that	
large	groups	of	individuals	make	high	
quality	collec:ve	judgements	

• Requires	individuals	to	reach	decisions	
independently	for	quality	judgements	

• How	does	this	no:on	apply	to	
ensembles	of	machines?		

Artific
ial

^



Conclusions
• Reservoir	Compu:ng	(RC)	provides	a	promising	method	for	predic:ng	
complex	:me	series,	harnessing	the	chaos	and	complexity	within	the	
reservoir		

• A	parallel	RC	scheme	makes	predic:on	of	very	large	systems	feasible	

• A	hybrid	scheme	that	couple	alternate	forecas:ng	with	the	reservoir	
offers	further,	omen	drama:c,	improvements	

• Hybrid	method	may	help	reveal	the	strengths	and	weaknesses	of	ML	
and	alternate	models,	leading	to	improvements	in	both	

• Open	and	exci:ng	ques:ons	remain	about	how	to	scale	this	to	
ensembles	and	layers	of	coupled	machines
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