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KoorPMAN MODE ANALYSIS

®) 400
300 m (Quasi)periodic features <> Eigenvalues
= m Eigenvalues « atomic part of spectral
=0 measure
100 m Dynamic Mode Decomposition approximates

features associated with eigenvalues.
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"Rowley CW, Mezi¢ I, Bagheri S, Schiatter P, Henningson DS (2009) Spectral analysis of nonlinear flows.
Journal of Fluid Mechanics, 641:115-127.
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MIXING BEHAVIOR MODELED BY STOCHASTIC TERMS
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m Mixing (turbulent) transport
<> power spectrum density (PSD)

m PSD < abs. continuous part of spectral
measure
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Froquoncy (2 ‘ m modeled as stochastic terms

1Griffa A, Owens K, Piterbarg L, Rozovskii B (1995) Estimates of turbulence parameters from Lagrangian
data using a stochastic particle model. Journal of Marine Research, 53(3):371-401.




BETWEEN: NON-MIXING, NON-REGULAR DYNAMICS

t=0.00

Viscous steady flow past a lattice of obstacles
results in anomalous transport (faster than
diffusive, but slower than mixing).

Goal: Model for Koopman spectral ‘
measure for anomalous transport. \

7

Attractor

1Zaks, M. A. Fractal Fourier spectra of Cherry flows. Physica D 149, 237-247 (2001).



THE ENTIRE TALK IN 3 SENTENCES.

m Koopman operator is a linear representation of nonlinear
dynamics.

m |n steady state, its spectral measure decomposes into:

> atomic spectrum (regular components),
> spectral density (mixing, chaotic components), and
» fractal parts (weak anomalous transport, intermittently correlated).

m We propose to model the fractal spectral measure by Affine
lterated Function Systems (AIFS).
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THE KooPMAN OPERATOR

Nonlinear dynamics: Koopman operator:
Time-T map on invariant set .A: Forf € L%(A),
d: A A K : L2(A — L*(A)

Xnp1 = P(Xq) Kf(x) =fo®(x)
& typically nonlinear, K linear without truncations,
A (infinite-dimensional, compact. L?(.A) (in)finite-dimensional.

Spectral Decomposition of the Koopman Operator

K'f = / e d[E(w f]—Ze’”wkIPkf+ / " d[Eg(w)f] .

atomic continuous

"Budigié, M., Mohr, R. M. & Mezié, I. Applied Koopmanism. Chaos 22, 047510-1-33 (2012).



SPECTRAL MEASURE AND THE AUTOCORRELATION FUNCTION.

Operator-valued E(w) applied to f L 1 = scalar-valued o¢(w) for erg. dynamics:
dot(w) K1

T N 1
/ e (AR (W), 1) = (K'1.6) = Jim S (K (4)f(x) = Ci(n)
- k=0

autocorrelation function

Autocorrelation Function <+ Spectral Measure

Autocorrelation of f(xi) is the Fourier tfm. of the spectral measure.

Note:
m Single observable «» Fourier spectral measure
m For some systems, Fourier s.m. = Koopman s.m.
m For others, this analysis needs to be extended.



DETECTION OF COMPONENTS OF SPECTRAL MEASURE

Autocorrelation:
(K"f,f) — (K" f)2

90 = @ - ®e

Mean-squared Autocorrelation:

Cf(n Z | Cf
Detection of fractal spectral measure'

m C;(n) — 0 < only spectral density
m Ci(n) =0 = nonon-trivial eigenvalues®
m Ci(n) ~n® = Disthe fractal dimension of the spectral measure®

'Pikovsky, et al. Singular continuous spectra in dissipative dynamics. PRE 52, (1995)
2Wiener's Lemma.

SKnill O (1998) Singular continuous spectrum and quantitative rates of weak mixing. Discrete and
Continuous Dynamical Systems, 4(1):33-42.
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LET'S WARM-UP; FAMILIAR DYNAMICS
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Regular time series: a/(t) = sin(50t) + cos(200t)
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EXTENSION OF LORENZ SYSTEM

Extended Lorenz system (D #~ 0, A # 0): Lorenz'63°
x=S(y —x)+SDy(z—R) ©
y=Rx—-y—xz ~ ZZ
z=xy —bz+Ax 10

m S - Prandtino.’ :

m R - Rayleigh no.?

m B - geometric parameter3

m D - vibrational parameter?

m A - symmetry br. parameter’

'Pikovsky, et al. Singular continuous spectra in dissipative dynamics. PRE 52, (1995)

2Lyubimov DV, Zaks MA (1983) Two mechanisms of the transition to chaos in finite-dimensional models of
convection. Physica D: Nonlinear Phenomena, 9(1):52-64.

3Lorenz E (1963) Deterministic Nonperiodic Flow. Journal Of The Atmospheric Sciences, 20(2):130-141.



SPECTRAL MEASURE OF PIKOVSKY'Q5 IS FRACTAL
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FUNDAMENTAL PROBLEM: REPRESENTATION

Goal: Parametric model for the spectral measure.

Use a fixed (small) number of parameters to represent the spectral measure.

Non-parametric models like FFT and Welch can be difficult to process and interpret.
m atomic part of spec. measure — points (eigenvalues)
m a.c. part of spec. measure — density function (parametric models)
m s.c. part of spec. measure — self-similar measures?
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SELF-SIMILAR APPROXIMATION




MODEL FOR SELF-SIMILAR MEASURES

Affine Iterated Function System (AIFS) Wy (w) = 0.33w

Wa(w) = 0.33w + 0.66

Wk(w):ékw—i-ﬁk, k=1,....K

pi2=10.5

e TRIEN TR

m Invariant measure (detailed balance): L
1
/ g(w)dV = Zpk/ go Wk(w)dl/ 08
- k o 0.6
m Fractal dimension D 04
D 0.2
> g P =1 i

Kk 0 05 1
D = 0.63093
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MOMENT PROBLEM FOR FRACTAL SPECTRAL MEASURE
Input:
Moments of Spectral Measure

anJ de

_,r v Handy-Mantica Algorithm
autocorrelation

N——
Fourier coeff. of spectral measure
m Convert moment problem on

spectral domain into a moment
problem on coefficient space of

AIFS.
Output: m Solve the auxiliary moment
AIFS parameters problem using Padé analysis.

m Bound on scale §
m Values of py, Sk

1Handy, C. R. & Mantica, G. Inverse problems in fractal construction: Moment method solution. Physica D
43, 17-36 (1990).
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PRELIMINARY RESULTS: USING POWER MOMENTS
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Figure: Estimates of the scale & (from the slope  Figure: “Density” of 5-HIFS estimated via_
of Cx(n)) and upper bounds of § given by Chaos Game (blue) and the correlogram C(w)
Handy-Mantica algorithm.

m 5 functions: only 1+5+5 values!
m Matching first 10 power moments.
m Large-scale features reconstructed

m Small scales not: feature or bui?
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CONNECTIONS WITH DYNAMICS

Assume that the Fourier measure dof(w ! , ) 1S aqaditionally invariant w.r.t.

Pk, Wk (w) = kw + B
Then it satisfies:

dof(w)

™ . 7 v
m Spectral theorem (K" f, f) = / ™ (dE(w)f, ), & € [0, 1).

J—m

m (Weak) detailed balance / 9(w)dos = Z Pk / g o Wx(w)doy
- k -

Setting g(w) = €™ we can derive the evolution of autocovariance:

<K" f, f> _ Zpkeinﬁk <KH(5}< f, f>
k

né, nf:\ n

_F L H
5 4o 50 Eg. Sy=4p.
50 oo Soo szg 1s

Ct. (K"(w)f, f) = “ (K" (w)f, f).
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WHAT’S NEXT?

Theory Computation Analysis
m Single-observable m Mixed-type spectral m Numerical analysis of
(Fourier) spectral measures AIFS estimator
measures — Koopman m Numerically-favorable m Connections between
spectral measure approaches AIFS attractors and DMD
m Examples of dynamics m Extension to multivariate eigenvalues
m spectral projectors m non-homogeneous AIFS
m 2D fractals (off-attractor
spectrum)
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