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Background, Contributions, and Motivaion



Affirmative Action (AA) Assessment Background

∙ Affirmative action litigation is decided using an assessment
criterion called strict scrutiny

1. Needs to serve a compelling government interest
2. Needs to be narrowly tailored to serve this interest

∙ A term called critical mass is used to meet this criterion

∙ Critical mass has not been defined in its legal use
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Contributions to AA Policy Assessment

∙ Provide a quantitative framework for critical mass in the context of
affirmative action assessment and litigation

∙ Create predictive models for university demographics over time
using Markov Chains

∙ Assess a current affirmative action policy according to critical
mass projections and the Markov Chain model’s results
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Why Use a Predictive Model?

∙ Almost all policy analysis to this point has been through
retroactive data studies

∙ We can understand a current policy’s future impact rather than
waiting 5-10 years to see how it plays out

∙ This new approach can save a lot of time, money, and energy for
universities and litigators
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Quantifying Critical Mass



Necessary Data for Quantifying Critical Mass

∙ State of California Department of Finance and U.S. Census Bureau
both provide racial demographic projections for their respective
domains from 2016-2060

∙ University of California Undergraduate Admissions Summaries also
provide data on state residency by race/ethnicity and year

∙ We will use the CA and U.S. projections provided, but will use a
stochastic process to make our own projections for the
UC-Berkeley in- vs. out-of-state breakdown
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Ideal Critical Mass Projections (Null Model)

8

Then, our critical mass projection, CMij for year i and group j is:

CMij = CAij × UCBi,in-state + USij × UCBi,out-of-state

Race/Ethnicity

Year

2018 2019 2020 2021 2022

African-American 0.07152 0.07137 0.07130 0.07114 0.07105
Asian-American 0.12982 0.13055 0.13122 0.13196 0.13262
Hispanic/Latino 0.35844 0.36110 0.36336 0.36584 0.36807
White/Caucasian 0.44022 0.43699 0.43412 0.43105 0.42826

Critical Mass Projections from CA and US Data*

*These are means from 10,000 iterations of the stochastic process



Markov Chain Modeling



Markov Chain Example


A B C

A 0 0.25 0.75
B 0.25 0.25 0.50
C 0.33 0.67 0


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Absorbing Markov Chains

∙ A state, si, is absorbing if the probability of staying in that state in
the next time step is 1

∙ If a state, si, is not absorbing, then it is called transient

∙ A Markov Chain is absorbing if it contains at least one absorbing
state and we can reach any absorbing state in finite steps
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Model States

∙ Time step is 4 months

∙ Absorbing States
∙ Graduating in 4, 5, or 6 Years (4G, 5G, 6G)
∙ Does Not Finish (DNF)

∙ Transient States:
∙ High School Terms (0A, 0B, 0C)
∙ College Terms (1A, 1B, 1C, 2A, 2B, 2C, …, 5A, 5B, 5C, 6A, 6B)
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Model Schematic
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Types of Data

∙ National Center for Education Statistics (NCES)
∙ Number of students graduating high school per year
∙ Percentage of each high school graduating class by race/ethnicity

∙ University of California Undergraduate Admission Summary
∙ Number of applicants, acceptances, and enrollment per year at
UC-Berkeley by race/ethnicity

∙ UC-Berkeley’s Office of Planning and Analysis
∙ Overall freshman retention rate by incoming class
∙ Overall 4-, 5-, and 6-year graduation rates by incoming class
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Data Prediction for 2018 - 2027

∙ National Center for Education Statistics (NCES)
∙ Use the NCES’ own projected data for this time span

∙ University of California Undergraduate Admission Summary
∙ Log-linear regression

∙ UC-Berkeley’s Office of Planning and Analysis
∙ Log-linear regression
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Markov Chain Model Predictions

We run our model for 2018 - 2027 to see our predicted results

These are percentages of the predicted enrollment for a given year

Race/Ethnicity

Year

2018 2019 2020 2021 2022

African-American 0.03328 0.03274 0.03241 0.03187 0.03135
Asian-American 0.49584 0.49437 0.49307 0.49163 0.49017
Hispanic/Latino 0.17559 0.18057 0.18549 0.19064 0.19591
White/Caucasian 0.29528 0.29233 0.28903 0.28586 0.28257

16

Critical Mass Predictions from Markov Chain Model



Results



Assessing the Predicted Performance

Assessment Metric:
(
Markov Chain Predictions
Critical Mass Projections

)
× 100
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Optimizing the 10-Year Overall Demographics

2018 2020 2022 2024 2026

5
0

1
0
0

1
5
0

2
0
0

2
5
0

3
0
0

3
5
0

Predicted Student Enrollment per 100 Projected Students

Year

N
u
m

b
e
r 

o
f 
S

tu
d
e
n
ts

African−American: 3x App, 3x En
Asian−American:   1x App, 1x En
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Conclusions and Future Work



Conclusions

∙ No subgroups are achieving critical mass in a feasible time span

∙ Examples of strategies that could help:
∙ More admissions recruiting events for groups that are
underrepresented

∙ Provide better on campus resources to increase enrollment yield for
underrepresented groups
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Future Work

∙ Apply this predictive modeling technique to:
∙ Another university with available data
∙ Another context (i.e. gendered affirmative action or employment)

∙ Find a faster algorithm for optimizing results over the next 10 years

∙ Develop another (better) assessment criterion
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Supplementary Material



Log-Linear Example 1: Lower Est. than Box-Cox
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Log-Linear Example 2: Higher Est. than Box-Cox
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Crtical Mass Quantification Process

∙ Find the kernel density for our observed data

∙ Draw a sample from that density

∙ Add that sample as an observed data point

∙ Repeat the process for as many years as we want to predict (10)
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Initial Conditions for Individual Markov Chains

∙ We will have a starting vector u of initial conditions for our model

∙ Since we only want to introduce students in our model to start
from the beginning of their senior year in high school (0A), our
vector will have the form

uij =
[
nij 0 0 . . . 0 0 0

]
∙ To find this, for a given year we take the overall number of
graduates and multiply it by the graduation demography
∙ Let Ni be the overall number of high school graduates for year i
∙ Let pij be the percentage makeup of graduates for group j in year i
∙ Then nij = Ni × pij is the nij we want for uij

29



Deriving Transition Rates: τ

We have 4-, 5-, and 6-year graduation rates and will call them
γ4, γ5, and , γ6 respectively. Derive the polynomial of transition:
T(x) = νx13 − γ4(x6 − x3)− γ5(x3 − 1)− γ6 to find our basic transition
rate, τ , which is the root of T(x) ∈ (0, 1].
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Deriving the Polynomial of Transition

We know that going from 1A→ 2A = ν , the first-year retention rate.

We would like to find the basic transition rate, that is, the rate that
takes an individual starting in 1A all the way to 6B.

We would like to know this since 1A→ 6B is the longest time one can
stay in the model without being forced to go to an absorbing state,
and we don’t have explicit data on when students drop out.

We know that there are seven time steps between 2A and 4B, so we
have that 1A→ 4B = νx7, where x is some number.

We then take into account the loss of those graduating in 4 years, γ4,
to get 1A→ 4C = (νx7 − γ4)x.
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Deriving the Polynomial of Transition, Continued

Then after progressing through two more steps to 5B, we get that
1A→ 5B = (νx7 − γ4)x3.

We find 1A→ 5C in a similar process to finding 1A→ 4C to get that
1A→ 5C = [(νx7 − γ4)x3 − (γ5 − γ4)]x.

Then, progressing two more steps to 6B, we get that
1A→ 6B = [(νx7 − γ4)x3 − (γ5 − γ4)]x3.

Lastly, we can multiply this out and simplify it to get the polynomial
of transition: T(x) = νx13 − γ4(x6 − x3)− γ5(x3 − 1)− γ6.
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Proof of Root in (0, 1] for Polynomial of Transition

We know that T(x) = νx13 − γ4(x6 − x3)− γ5(x3 − 1)− γ6

We know that ν, γ4, γ5, γ6 ∈ [0, 1] and ν ≥ γ6 ≥ γ5 ≥ γ4

T(0) = −γ6, since we have that γ6 ≥ 0 =⇒ T(0) ≤ 0

T(1) = ν − γ6, since we have that ν ≥ γ6 =⇒ T(1) ≥ 0

Since T(x) is just a polynomial, we know T(x) is continuous

Then, by the Intermediate Value Theorem, there is at least one root
of T(x) which exists in [0, 1] ■
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Deriving Transition Rates: λ4G

Conditional probability gives us that P(B|A) = P(A∩B)
P(A)

4B→ 4G : λ4G = P(4G|4B) = P(4G∩4B)
P(4B) = P(4G)

P(4B) =
γ4
ντ 7
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Deriving Transition Rates: λ4C

Conditional probability gives us that P(B|A) = P(A∩B)
P(A)

4B→ 4C : λ4C =
P(4C)
P(4B) =

[P(4B)−P(4G)]τ
P(4B) = (ντ 7−γ4)τ

ντ 7 = ντ 7−γ4
ντ 6
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Deriving Transition Rates: λ5G, λ5C, λ6G

5B→ 5G : λ5G = P(5G)
P(5B) =

γ5−γ4
(ντ 7−γ4)τ 3

= γ5−γ4
ντ 10−γ4τ 3

5B→ 5C : λ5C =
P(5C)
P(5B) =

[P(5B)−P(5G)]τ
P(5B) = · · · = ντ 10−γ4(τ

3−1)−γ5
ντ 9−γ4τ 2

6B→ 6G is λ6G = P(6G)
P(6B) = · · · = γ6−γ5

ντ 13−γ4(τ 6−τ 3)−γ5τ 3
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