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* Examples of wind-induced instabilities: The Tacoma Narrows Bridge, and
the Volga Bridge

* Wind-induced vibrations of a bridge at a frequency different from the
natural frequency of the bridge girder (the Tacoma bridge case).

* Parallels and differences between crowd and wind-induced synchrony.

* A synchronization hypothesis: wind-induced synchronization of
suspension/load bearing elements causes the onset of bridge oscillations
and can explain the shift of the resonant frequency.



Tacoma Narrows (1940)

A transverse twisting mode emerged from mild winds
(about 40 miles per hour)







The Volga Bridge:
Volgograd,
Russia, 2011

Faulty design fixed by
hydraulic mass dampers

- Long-wavelength resonance vibration due to mild winds
- Bridge vibrations initiated from the vibration of the supports (not the girder)!

Brun et al., “Bypassing shake, rattle, and roll,” Physics World, 2013.






Vortex Shedding and Instability

Screen Layout Editor

WEfem  Help

* yortex
IS Know
oscillati

Vortex-induced vibrations in a section model of Hardanger
Bridge, Norway

e curren
nonlinea

ific due to poorly-understood

* requires extensive wind-tunnel testing and often only a section of the deck is tested
(full models only for long-span bridges and usually highly simplified miniatures).

t J.5.0wen, A.M.Vann, J.P.Davies and A.Blakeborough, “The prototype testing of Kessock = Gilorglo Diana and Giuseppe Flammenghi. "Wind tunnel tests and numerical approach for long span bridges: the Messina bridge”
Bridge: response to vortex shedding.” The Seventh Iinternational Colloguium on Bluff Body Aerodynamics and its Applications [BEAAT) Shanghai, China;
Journal of Wind Engineering and Industrial Aerodynamics Volume 60, April 1996, Pages 91-108 September 2-6, 2012




Vortex Shedding and Instability

@

» vortex shedding

IS kr]ow_n to cause damagmg Vortex-induced vibrations in a section model of Hardanger
oscillations’ Bridge, Norway

» current models are structure-specific due to poorly-understood
nonlinearity.

* requires extensive wind-tunnel testing and often only a section of the deck is tested
(full models only for long-span bridges and usually highly simplified miniatures)-.

t J.5.0wen, A.M.Vann, J.P.Davies and A.Blakeborough, “The prototype testing of Kessock = Glorgio Diana and Giuseppe Flammenghi. “Wind tunnel tests and numerical approach for long span bridges: the Messina bridge”
Bridge: response to vortex shedding.” The Seventh International Colloguium on Bluff Body Serodynamics and its Applications [BEAAT) Shanghai, China;

Journal of Wind Engineering and Industrial Aerodynamics Volume 60, April 1996, Pages 91-108 September 2-6, 2012




Vortex Shedding and Instability

®

» vortex shedding

IS k']ow_n to cause damagmg Vortex-induced vibrations in a section model of Hardanger
oscillations! Bridge, Norway

» current models are structure-specific due to poorly-understood
nonlinearity.

* requires extensive wind-tunnel testing and often only a section of the deck is tested
(full models only for long-span bridges and usually highly simplified miniatures)-.

L ).5.0wen, A.M.Vann, J.P.Davies and A .Blakeborough, “The prototype testing of Kessock * Glorgie Diana and Giuseppe Flammenghi. “Wind tunnel tests and numerical approach for long span bridges: the Messina bridge”
Bridge: response 1o vortex shedding.” The Seventh International Colloguium on Bluff Body Serodynamics and its Applications [BEAAT) Shanghai, China;

Jaurnal of Wind Engineering and Industrial Aerodynamics Volume 60, April 1996, Pages 91-108 September 2-8, 2012







The Volga Bridge:
Volgograd,
Russia, 2011

Faulty design fixed by
hydraulic mass dampers
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Crowd vs. wind- load of a suspension bridge

B

Crowd loading (the London Millennium Bridge case): Phase-
locking among pedestrians is not the cause of bridge wobbling:, but
rather a consequence. Pedestrians adjust their gaits to maintain
balance and destabilize the bridge via the negative damping
mechanism.

Wind loading (the Tacoma Bridge case): Our synchronization
hypothesis: wind-induced synchronization of suspension/load
bearing elements can explain the shift of the resonant frequency.

L *0On the Millenium Bridge Synchronization Myth."”
(first talk in this minisymposium)
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» current models are structure-specific due to poorly-understood
nonlinearity.

* requires extensive wind-tunnel testing and often only a section of the deck is tested
(full models only for long-span bridges and usually highly simplified miniatures)’.
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- Long-wavelength resonance vibration due to mild winds
- Bridge vibrations initiated from the vibration of the supports (not the girder)!
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Adding vortex shedding
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No bridge movement (y=0):

Supporting cables (or tall load bearing towers) are more flexible
and can become oscillators prior to noticeable bridge wobbling.

T — Analogy with a walker on a bridge:
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Close-form solutions for the “glued” limit cycle provide
estimates of the oscillation frequency.
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Complete synchrony among
the supports is governed by
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Wobbling at two forcing frequencies
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Co-existence of in-phase and out-of-phase states
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Resonant Frequency Shift
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