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Background

Animal groups?
⇒ decision reached through collaboration

Social Networks
⇒ both cooperative and antagonistic interactions may coexist

?Gray at al., IEEE TCNS, 2018.
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⇒ ẋ = f(x, π)

Signed networks.
I Cooperative interaction: positive sign.
I Antagonistic interaction: negative sign.

Nonlinear model for opinion forming.
I x: vector of opinions.
I Equilibrium points: possible decisions.
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Signed networks
Signed Laplacian

G connected signed network, with n nodes and adjacency matrix A.

L = ∆−A : signed Laplacian
L = I −∆−1A : normalized signed Laplacian,

where

∆ = diag{δ1, . . . , δn} : δi =
n∑
j=1
|aij | > 0 ∀ i.

Example

A =

[
0 −100 10
−100 0 1

10 1 0

]
, ∆ = diag{110, 101, 11}

L =

[
1 0.909 −0.091

0.99 1 −0.01
−0.909 −0.091 1

] 1

2

3

−100

+10
+1
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Signed networks
Structural balance
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Def. A graph G structurally balanced if all its cycles are positive.
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Signed networks
Structural balance: equivalent conditions

G connected signed graph.

1. V = V1 ∪ V2 s.t. every edge:
I between V1 and V2 is negative;
I within V1 or V2 is positive;

2. ∃ signature matrix
S = diag{s1, . . . , sn} with
si = ±1, s.t. SLS has all
nonpositive off-diagonal entries;

3. λ1(L) = 0.

Example

1
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5+1

+100
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−100

+10

+1

+100

mutual friends

−1

−1

L =


1 −0.99 −0.01 0 0

−0.83 1 −0.08 0.08 0.01
−0.01 −0.09 1 0.9 0

0 0.09 0.9 1 −0.01
0 0.5 0 −0.5 1
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Example (structurally unbalanced network)

L =


1 −0.99 −0.01 0 0

−0.83 1 −0.08 0.08 0.01
−0.01 −0.09 1 0.9 0

0 0.09 0.9 1 0.01
0 0.5 0 0.5 1


and λ1(L) = 0.004 > 0.

⇒ @ S signature matrix s.t. SLS has all
nonpositive off-diagonal elements

1
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4
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+100

−10

+1

+10

−1

−100

−1

−1

−10

+1

+100

+1

mutual friends

−1

−1

How “far” is the network from a structurally balanced state?

With
S = diag{1, 1,−1, 1,−1} ⇒ SLS =


1 −0.99 0.01 0 0

−0.83 1 0.08 0.08 −0.01
0.01 0.09 1 −0.9 0

0 0.09 −0.9 1 −0.01
0 −0.5 0 −0.5 1


we obtain

0.36 =
∑

positive (off-diagonal) elements of SLS
= minimum possible sum!
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Signed networks
Frustration index, algebraic conflict

Task

Characterize the graph distance from structurally balanced state

Frustration Index

ε(G) = min
S=diag{s1,...,sn},

si=±1

1
2

∑
i 6=j

[ |L|+ SLS ]ij

Computation: NP-hard problem

Algebraic Conflict
ξ(G) = λ1(L)

λ1(L) good approximation of ε(G)
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Model for opinion forming

Signed network G with n agents;

x ∈ Rn vector of opinions.

+

+
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−
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−

ẋ = −∆x+ πAψ(x), x ∈ Rn

where:
A adjacency matrix, ∆ = diag{δ1, . . . , δn}
ψ(x) = [ψ1(x1) . . . ψn(xn)]T

π > 0 scalar

xi

agent i agent j

−δi

−δi

ψi(·)

ψi(·)

aji

aji

π

π

“inertia”

expressed by weighted by−δixi

πajiψi(xi)
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Model for opinion forming
Assumptions:
G undirected, connected, without self-loops
(A is symmetric, irreducible, with null diagonal).
signed Laplacian-like assumption: δi =

∑
j
|aij | > 0.

“S-shape” for each ψi(xi) : R→ R
(odd, monotonically increasing with ∂ψi

∂xi
(0) = 1,

saturated, sigmoidal)

(?) ẋ = −∆x+ πAψ(x) = ∆ [−x+ πHψ(x) ], x ∈ Rn,

with H := ∆−1A ⇒ L = I −H.

Then

(?) is monotone ⇔ G is structurally balanced ⇔ λ1(L) = 0.
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Task

Investigate how the social effort parameter π affects the existence and
stability of the equilibrium points of the system

ẋ = ∆ [−x+ πHψ(x)] , x ∈ Rn.

In particular:
Find π1 s.t. for π ∈ (0, π1) nontrivial equilibria cannot appear.
Investigate what happens for π > π1.
Find π2 s.t. for π ∈ (π1, π2) there exist only three equilibria.

Tools:
matrix theory: symmetrizable matrices;
bifurcation theory (L has simple eigenvalues).

R. Gray, A. Franci, V. Srivastava, N.E. Leonard, Multiagent Decision-Making
Dynamics Inspired by Honeybees, IEEE TCNS, v. 5 (2), pp. 793-806, 2018.
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Bifurcation analysis
Structurally balanced networks

ẋ = ∆ [−x+ πHψ(x)] , x ∈ Rn.

π < 1: x = 0 only eq. point (GAS).

π = 1: pitchfork bifurcation
I x = 0 saddle point;
I two more equilibria: x∗ and −x∗

s.t. |x∗| = α1n (loc. AS ∀π > 1).

π = π2 = 1
1−λ2(L) : (second)

pitchfork bifurcation
I new equilibria (stable/unstable).

Bifurcation diagram (xi, π, xj)

A. Fontan and C. Altafini, “Multiequilibria analysis for a class of collective
decision-making networked systems”, IEEE TCNS, vol. 5 (4), pp. 1931-1940, 2018.
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Bifurcation analysis
Structurally unbalanced networks

ẋ = ∆ [−x+ πHψ(x)] , x ∈ Rn.

π1 = 1
1− λ1(L) , π2 =

{
1

1−λ2(L) , λ2(L) < 1
+∞, otherwise.

π < π1: x = 0 only eq. point (GAS).

π = π1: pitchfork bifurcation
I x = 0 saddle point;
I two new equilibria x∗ and −x∗.

π = π2: (second) pitchfork
bifurcation
I new equilibria (stable/unstable).

Bifurcation diagram (xi, π, xj)
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Interpretation of the results
G structurally balanced G structurally unbalanced

� π < π1: no decision;

� π ∈ (π1, π2): two (alternative) decisions;

π > π2: several decisions.
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Interpretation of the results

Model for opinion forming: ẋ = ∆ [−x+ πHψ(x)].

π ∈ (π1, π2): two alternative decisions (eq. points x∗ and −x∗)

π1 = 1
1− λ1(L) , π2 =

{
1

1−λ2(L) , λ2(L) < 1
+∞, otherwise.

Structurally balanced G: λ1(L) = 0.
I π1 = 1 fixed
I π2 depends on λ2(L): algebraic connectivity of G

Structurally unbalanced G: λ1(L) > 0.
I λ1(L) ≈ ε(G): measure of the structural

imbalance of G
I λ2(L): independent from ε(G)
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Example
Sequence of signed Erdős-Rényi graphs G with n = 500 nodes.

β = percentage of edges with negative sign
ε(G) = frustration of the network

π1 = 1
1− λ1(L) , π2 =

{
1

1−λ2(L) , λ2(L) < 1
+∞, otherwise.
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Example
Consider three signed networks G with n = 20 nodes and different percentages
of edges with negative sign given by β = 0.2, β = 0.4, β = 0.7.

β frustration ε(G) λ1(L) λ2(L) π1 π2 π2 − π1

(a) 0.2 0.666 0.065 0.500 1.069 2.000 0.930
(b) 0.4 4.285 0.332 0.491 1.496 1.966 0.470
(c) 0.7 5.536 0.475 0.499 1.905 1.995 0.090

(a) ε(G) = 0.666 (b) ε(G) = 4.285 (c) ε(G) = 5.536
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Summary

Model for opinion forming:
signed network
saturated sigmoidal nonlinearities
social effort parameter π

Results
Nontrivial decision: π > π1, π1 grows with the frustration.

Two alternative decisions: π ∈ (π1, π2). The interval (π1, π2) becomes
smaller as the frustration grows.
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Application
From parliamentary networks to government formation

Parliamentary elections
in 29 European countries

(1978-2019)

Characterized by:
negotiation periods;
coalition governments
(enjoying the confidence of the
Parliament).
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Parliamentary networks

pi: political parties winning seats in the Parliament (different sizes)

= PM

⇓

p1

p2 p4

p7

p6

p5p3

p1 p2 p3 p4 p5 p6 p7
p1

p2

p3

p4

p5

p6

p7

parliamentary network G adjacency matrix A
scenario: all-against-all
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Process of government formation

Model for opinion forming: ẋ = −∆x+ πAψ(x)
π: duration of negotiation
decision: vote of confidence to candidate cabinet

Previous results:
� π > π1: nontrivial decision
� π1 ∝ frustration

⇓

p1

p2 p4

p7

p6

p5p3

Aim

To predict the duration of “negotiation” period before the government formation
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Results: duration of “negotiation” period

Example: Germany
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Results: duration of “negotiation” period

scenario: pre-electoral coalitions

p1

p2 p4

p7

p6

p5p3

p1 p2 p3 p4 p5 p6 p7
p1

p2

p3

p4

p5

p6

p7

parliamentary network G adjacency matrix A

Example: Italy

all-against-all pre-electoral coalitions
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Results: duration of “negotiation” period

scenario: all-against-all, weighted

far left left

|
centre right far right

| | | | | | |

p1 p2 p6 p4 p5 p3 p7

left-right positions: rile (electoral manifestos ?), random

p1 p2 p3 p4 p5 p6 p7
p1

p2

p3

p4

p5

p6

p7

Example: Italy

unweighted rile random

?Volkens et al. (2018): Manifesto Project, doi: 10.25522/manifesto.mpds.2018b
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scenario: pre-electoral coalitions



Conclusions

Model for opinion forming:
signed network
saturated sigmoidal nonlinearities
social effort parameter

Results
The social effort required to reach a decision grows with the frustration of
the network.
The interval for the social effort parameter for which only two alternative
decisions are possible becomes smaller as the frustration grows.

Application: process of government formation in 29 parliamentary
democracies
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