Decision Making in Presence of Frustration on Multiagent Antagonistic Networks

Angela Fontan and Claudio Altafini

Department of Electrical Engineering Linköping University, Sweden

Outline

- Background and motivation
- Signed network: structural balance
- Model for opinion forming
- Application

Background

 $\begin{array}{l} {\rm Animal\ groups}^{\star} \\ \Rightarrow {\rm decision\ reached\ through\ collaboration} \end{array}$

Social Networks

 \Rightarrow both cooperative and antagonistic interactions may coexist

*Gray at al., IEEE TCNS, 2018.

Background

Signed networks.

- Cooperative interaction: positive sign.
- Antagonistic interaction: negative sign.
- Nonlinear model for opinion forming.
 - \blacktriangleright x: vector of opinions.
 - Equilibrium points: possible decisions.

Signed Laplacian

 ${\mathcal G}$ connected signed network, with n nodes and adjacency matrix A.

 $L = \Delta - A: \text{ signed Laplacian}$ $\mathcal{L} = I - \Delta^{-1}A: \text{ normalized signed Laplacian},$

where

$$\Delta = \operatorname{diag}\{\delta_1, \dots, \delta_n\}: \ \delta_i = \sum_{j=1}^n |a_{ij}| > 0 \quad \forall \ i.$$

Example

$$A = \begin{bmatrix} 0 & -100 & 10 \\ -100 & 0 & 1 \\ 10 & 1 & 0 \end{bmatrix}, \quad \Delta = \text{diag}\{110, 101, 11\}$$
$$\mathcal{L} = \begin{bmatrix} 1 & 0.909 & -0.091 \\ 0.99 & 1 & -0.01 \\ -0.909 & -0.091 & 1 \end{bmatrix}$$

Signed networks Structural balance

Def. A graph \mathcal{G} structurally balanced if all its cycles are positive.

Structural balance: equivalent conditions

 ${\mathcal G}$ connected signed graph.

- 1. $\mathcal{V} = \mathcal{V}_1 \cup \mathcal{V}_2$ s.t. every edge:
 - between \mathcal{V}_1 and \mathcal{V}_2 is negative;
 - within \mathcal{V}_1 or \mathcal{V}_2 is positive;

Structural balance: equivalent conditions

 ${\mathcal G}$ connected signed graph.

- 1. $\mathcal{V} = \mathcal{V}_1 \cup \mathcal{V}_2$ s.t. every edge:
 - between \mathcal{V}_1 and \mathcal{V}_2 is negative;
 - within \mathcal{V}_1 or \mathcal{V}_2 is positive;
- 2. \exists signature matrix $S = \text{diag}\{s_1, \dots, s_n\}$ with $s_i = \pm 1$, s.t. $S\mathcal{L}S$ has all nonpositive off-diagonal entries;

Example

 $S = \mathrm{diag}\{1, 1, 1, -1, -1\}$

Structural balance: equivalent conditions

 ${\mathcal G}$ connected signed graph.

1. $\mathcal{V} = \mathcal{V}_1 \cup \mathcal{V}_2$ s.t. every edge:

- between V₁ and V₂ is negative;
 within V₁ or V₂ is positive;
- 2. \exists signature matrix $S = \text{diag}\{s_1, \dots, s_n\}$ with $s_i = \pm 1$, s.t. $S\mathcal{L}S$ has all nonpositive off-diagonal entries;

3.
$$\lambda_1(\mathcal{L}) = 0.$$

Example

$$S\mathcal{L}S = \begin{bmatrix} 1 & -0.99 & -0.01 & 0 & 0\\ -0.83 & 1 & -0.08 & -0.08 & -0.01\\ -0.01 & -0.09 & 1 & -0.9 & 0\\ 0 & -0.09 & -0.9 & 1 & -0.01\\ 0 & -0.5 & 0 & -0.5 & 1 \end{bmatrix}$$

Structural balance: equivalent conditions

 ${\mathcal G}$ connected signed graph.

- 1. $\mathcal{V} = \mathcal{V}_1 \cup \mathcal{V}_2$ s.t. every edge:
 - between \mathcal{V}_1 and \mathcal{V}_2 is negative;
 - within \mathcal{V}_1 or \mathcal{V}_2 is positive;
- 2. \exists signature matrix $S = \text{diag}\{s_1, \dots, s_n\}$ with $s_i = \pm 1$, s.t. $S\mathcal{L}S$ has all nonpositive off-diagonal entries;
- 3. $\lambda_1(\mathcal{L}) = 0.$

 $\Rightarrow \mathcal{G} \text{ is structurally unbalanced iff} \\ \lambda_1(\mathcal{L}) > 0$

Example

$$S\mathcal{L}S = \begin{bmatrix} 1 & -0.99 & -0.01 & 0 & 0\\ -0.83 & 1 & -0.08 & -0.08 & -0.01\\ -0.01 & -0.09 & 1 & -0.9 & 0\\ 0 & -0.09 & -0.9 & 1 & -0.01\\ 0 & -0.5 & 0 & -0.5 & 1 \end{bmatrix}$$

mutual friends

 $\Rightarrow \nexists S \text{ signature matrix s.t. } S\mathcal{L}S \text{ has all nonpositive off-diagonal elements}$

How "far" is the network from a structurally balanced state?

 $\Rightarrow \nexists S \text{ signature matrix s.t. } S\mathcal{L}S \text{ has all nonpositive off-diagonal elements}$

How "far" is the network from a structurally balanced state?

With

 $S = \mathrm{diag}\{1, 1, -1, 1, -1\}$

Example (structurally unbalanced network)

$$\mathcal{L} = \begin{bmatrix} 1 & -0.99 & -0.01 & 0 & 0 \\ -0.83 & 1 & -0.08 & 0.08 & 0.01 \\ -0.01 & -0.09 & 1 & 0.9 & 0 \\ 0 & 0.09 & 0.9 & 1 & 0.01 \\ 0 & 0.5 & 0 & 0.5 & 1 \end{bmatrix}$$

and $\lambda_1(\mathcal{L}) = 0.004 > 0.$

 $\Rightarrow \nexists S \text{ signature matrix s.t. } S\mathcal{L}S \text{ has all nonpositive off-diagonal elements}$

How "far" is the network from a structurally balanced state?

With

$$S = \text{diag}\{1, 1, -1, 1, -1\} \Rightarrow S\mathcal{L}S = \begin{bmatrix} 1 & -0.99 & 0.01 & 0 & 0 \\ -0.83 & 1 & 0.08 & 0.08 & -0.01 \\ 0.01 & 0.09 & 1 & -0.9 & 0 \\ 0 & 0.09 & -0.9 & 1 & -0.01 \\ 0 & -0.5 & 0 & -0.5 & 1 \end{bmatrix}$$

we obtain

$$0.36 = \sum \text{ positive (off-diagonal) elements of } S\mathcal{LS}$$

= minimum possible sum!

Frustration index, algebraic conflict

Task

Characterize the graph distance from structurally balanced state

Frustration Index

$$\boldsymbol{\epsilon}(\mathcal{G}) = \min_{\substack{S = \text{diag}\{s_1, \dots, s_n\}, \\ s_i = \pm 1}} \frac{1}{2} \sum_{i \neq j} \left[\left| \mathcal{L} \right| + S \mathcal{L} S \right]_{ij}$$

Computation: NP-hard problem

Algebraic Conflict

 $\xi(\mathcal{G}) = \lambda_1(\mathcal{L})$

 $\lambda_1(\mathcal{L})$ good approximation of $\epsilon(\mathcal{G})$

Frustration index, algebraic conflict

Task

Characterize the graph distance from structurally balanced state

Frustration Index

$$\boldsymbol{\epsilon}(\mathcal{G}) = \min_{\substack{S = \text{diag}\{s_1, \dots, s_n\}, \\ s_i = \pm 1}} \frac{1}{2} \sum_{i \neq j} \left[|\mathcal{L}| + S\mathcal{L}S \right]_{ij}$$

Computation: NP-hard problem

Algebraic Conflict

$$\boldsymbol{\xi}(\boldsymbol{\mathcal{G}}) = \lambda_1(\boldsymbol{\mathcal{L}})$$

 $\lambda_1(\mathcal{L})$ good approximation of $\epsilon(\mathcal{G})$

Frustration index, algebraic conflict

Task

Characterize the graph distance from structurally balanced state

Frustration Index

$$\boldsymbol{\epsilon}(\mathcal{G}) = \min_{\substack{S = \text{diag}\{s_1, \dots, s_n\}, \\ s_i = \pm 1}} \frac{1}{2} \sum_{i \neq j} \left[|\mathcal{L}| + S\mathcal{L}S \right]_{ij}$$

Computation: NP-hard problem

Algebraic Conflict

$$\boldsymbol{\xi}(\boldsymbol{\mathcal{G}}) = \lambda_1(\boldsymbol{\mathcal{L}})$$

 $\lambda_1(\mathcal{L})$ good approximation of $\epsilon(\mathcal{G})$

- Signed network \mathcal{G} with n agents;
- $x \in \mathbb{R}^n$ vector of opinions.

$$\dot{x} = -\Delta x + \pi A \psi(x), \quad x \in \mathbb{R}^n$$

where:

• A adjacency matrix, $\Delta = \operatorname{diag}\{\delta_1, \ldots, \delta_n\}$

$$\psi(x) = [\psi_1(x_1) \dots \psi_n(x_n)]^T$$

- Signed network \mathcal{G} with n agents;
- $x \in \mathbb{R}^n$ vector of opinions.

$$\dot{x} = -\Delta x + \pi A \psi(x), \quad x \in \mathbb{R}^n$$

where:

• A adjacency matrix, $\Delta = \operatorname{diag}\{\delta_1, \ldots, \delta_n\}$

$$\psi(x) = [\psi_1(x_1) \dots \psi_n(x_n)]^T$$

- Signed network \mathcal{G} with n agents;
- $x \in \mathbb{R}^n$ vector of opinions.

$$\dot{x} = -\Delta x + \pi A \psi(x), \quad x \in \mathbb{R}^n$$

where:

• A adjacency matrix, $\Delta = \operatorname{diag}\{\delta_1, \ldots, \delta_n\}$

$$\psi(x) = [\psi_1(x_1) \dots \psi_n(x_n)]^T$$

- Signed network \mathcal{G} with n agents;
- $x \in \mathbb{R}^n$ vector of opinions.

$$\dot{x} = -\Delta x + \pi A \psi(x), \quad x \in \mathbb{R}^n$$

where:

• A adjacency matrix, $\Delta = \operatorname{diag}\{\delta_1, \ldots, \delta_n\}$

$$\psi(x) = [\psi_1(x_1) \dots \psi_n(x_n)]^T$$

- Signed network \mathcal{G} with n agents;
- $x \in \mathbb{R}^n$ vector of opinions.

$$\dot{x} = -\Delta x + \pi A \psi(x), \quad x \in \mathbb{R}^n$$

where:

• A adjacency matrix, $\Delta = \operatorname{diag}\{\delta_1, \ldots, \delta_n\}$

$$\psi(x) = [\psi_1(x_1) \dots \psi_n(x_n)]^T$$

Assumptions:

- G undirected, connected, without self-loops
 (A is symmetric, irreducible, with null diagonal).
- signed Laplacian-like assumption: $\delta_i = \sum_j |a_{ij}| > 0.$
- "S-shape" for each $\psi_i(x_i) : \mathbb{R} \to \mathbb{R}$ (odd, monotonically increasing with $\frac{\partial \psi_i}{\partial x_i}(0) = 1$, saturated, sigmoidal)

(*)
$$\dot{x} = -\Delta x + \pi A \psi(x) = \Delta \left[-x + \pi H \psi(x) \right], \quad x \in \mathbb{R}^n$$

with
$$H := \Delta^{-1}A \quad \Rightarrow \quad \mathcal{L} = I - H.$$

Then

(*) is monotone $\Leftrightarrow \mathcal{G}$ is structurally balanced $\Leftrightarrow \lambda_1(\mathcal{L}) = 0.$

Task

Investigate how the social effort parameter π affects the existence and stability of the equilibrium points of the system

$$\dot{x} = \Delta \left[-x + \pi H \psi(x) \right], \quad x \in \mathbb{R}^n.$$

In particular:

- Find π_1 s.t. for $\pi \in (0, \pi_1)$ nontrivial equilibria cannot appear.
- Investigate what happens for $\pi > \pi_1$. Find π_2 s.t. for $\pi \in (\pi_1, \pi_2)$ there exist only three equilibria.

R. Gray, A. Franci, V. Srivastava, N.E. Leonard, Multiagent Decision-Making Dynamics Inspired by Honeybees, IEEE TCNS, v. 5 (2), pp. 793-806, 2018.

Task

Investigate how the social effort parameter π affects the existence and stability of the equilibrium points of the system

$$\dot{x} = \Delta \left[-x + \pi H \psi(x) \right], \quad x \in \mathbb{R}^n.$$

In particular:

- Find π_1 s.t. for $\pi \in (0, \pi_1)$ nontrivial equilibria cannot appear.
- Investigate what happens for $\pi > \pi_1$. Find π_2 s.t. for $\pi \in (\pi_1, \pi_2)$ there exist only three equilibria.

Tools:

- matrix theory: symmetrizable matrices;
- bifurcation theory (\mathcal{L} has simple eigenvalues).

R. Gray, A. Franci, V. Srivastava, N.E. Leonard, Multiagent Decision-Making Dynamics Inspired by Honeybees, IEEE TCNS, v. 5 (2), pp. 793-806, 2018.

Structurally balanced networks

A. Fontan and C. Altafini, "Multiequilibria analysis for a class of collective decision-making networked systems", *IEEE TCNS*, vol. 5 (4), pp. 1931-1940, 2018.

Structurally balanced networks

A. Fontan and C. Altafini, "Multiequilibria analysis for a class of collective decision-making networked systems", *IEEE TCNS*, vol. 5 (4), pp. 1931-1940, 2018.

Structurally balanced networks

$$\dot{x} = \Delta \left[-x + \pi H \psi(x) \right], \quad x \in \mathbb{R}^n.$$

π < 1: x = 0 only eq. point (GAS).
π = 1: pitchfork bifurcation
x = 0 saddle point;
two more equilibria: x* and -x* s.t. |x*| = α1_n (loc. AS ∀π > 1).

• $\pi = \pi_2 = \frac{1}{1 - \lambda_2(\mathcal{L})}$: (second) pitchfork bifurcation

• new equilibria (stable/unstable).

A. Fontan and C. Altafini, "Multiequilibria analysis for a class of collective decision-making networked systems", *IEEE TCNS*, vol. 5 (4), pp. 1931-1940, 2018.

Structurally unbalanced networks

• $\pi < \pi_1$: x = 0 only eq. point (GAS).

• $\pi = \pi_1$: pitchfork bifurcation

• x = 0 saddle point;

two new equilibria x^* and $-x^*$.

• $\pi = \pi_2$: (second) pitchfork bifurcation

• new equilibria (stable/unstable).

Structurally unbalanced networks

$$\dot{x} = \Delta \left[-x + \pi H \psi(x) \right], \quad x \in \mathbb{R}^n.$$
$$\pi_1 = \frac{1}{1 - \lambda_1(\mathcal{L})}, \quad \pi_2 = \begin{cases} \frac{1}{1 - \lambda_2(\mathcal{L})}, & \lambda_2(\mathcal{L}) < 1\\ +\infty, & \text{otherwise.} \end{cases}$$

• $\pi < \pi_1$: x = 0 only eq. point (GAS).

- $\pi = \pi_1$: pitchfork bifurcation
 - $\blacktriangleright x = 0 \text{ saddle point;}$
 - two new equilibria x^* and $-x^*$.
- $\pi = \pi_2$: (second) pitchfork bifurcation

• new equilibria (stable/unstable).

Structurally unbalanced networks

$$\begin{split} \dot{x} &= \Delta \left[-x + \pi H \psi(x) \right], \quad x \in \mathbb{R}^n. \\ \pi_1 &= \frac{1}{1 - \lambda_1(\mathcal{L})}, \quad \pi_2 = \begin{cases} \frac{1}{1 - \lambda_2(\mathcal{L})}, & \lambda_2(\mathcal{L}) < 1 \\ +\infty, & \text{otherwise.} \end{cases} \end{split}$$

• $\pi < \pi_1$: x = 0 only eq. point (GAS).

- $\pi = \pi_1$: pitchfork bifurcation
 - $\blacktriangleright x = 0 \text{ saddle point;}$
 - two new equilibria x^* and $-x^*$.
- $\pi = \pi_2$: (second) pitchfork bifurcation
 - new equilibria (stable/unstable).

${\mathcal G}$ structurally unbalanced

• $\pi < \pi_1$: no decision;

 ${\mathcal G}$ structurally unbalanced

• $\pi < \pi_1$: no decision;

• $\pi \in (\pi_1, \pi_2)$: two (alternative) decisions;

${\mathcal G}$ structurally unbalanced

- $\pi < \pi_1$: no decision;
- $\pi \in (\pi_1, \pi_2)$: two (alternative) decisions;
- $\pi > \pi_2$: several decisions.

Model for opinion forming: $\dot{x} = \Delta [-x + \pi H \psi(x)].$

 $\pi \in (\pi_1, \pi_2): \text{ two alternative decisions (eq. points } x^* \text{ and } -x^*)$ $\pi_1 = \frac{1}{1 - \lambda_1(\mathcal{L})}, \qquad \pi_2 = \begin{cases} \frac{1}{1 - \lambda_2(\mathcal{L})}, & \lambda_2(\mathcal{L}) < 1\\ +\infty, & \text{otherwise.} \end{cases}$

Model for opinion forming: $\dot{x} = \Delta \left[-x + \pi H \psi(x) \right]$.

 $\pi \in (\pi_1, \pi_2): \text{ two alternative decisions (eq. points } x^* \text{ and } -x^*)$ $\pi_1 = \frac{1}{1 - \lambda_1(\mathcal{L})}, \qquad \pi_2 = \begin{cases} \frac{1}{1 - \lambda_2(\mathcal{L})}, & \lambda_2(\mathcal{L}) < 1\\ +\infty, & \text{otherwise.} \end{cases}$

- Structurally balanced \mathcal{G} : $\lambda_1(\mathcal{L}) = 0$.
 - \blacktriangleright $\pi_1 = 1$ fixed
 - ▶ π_2 depends on $\lambda_2(\mathcal{L})$: algebraic connectivity of \mathcal{G}

Model for opinion forming: $\dot{x} = \Delta \left[-x + \pi H \psi(x) \right]$.

 $\pi \in (\pi_1, \pi_2): \text{ two alternative decisions (eq. points } x^* \text{ and } -x^*)$ $\pi_1 = \frac{1}{1 - \lambda_1(\mathcal{L})}, \qquad \pi_2 = \begin{cases} \frac{1}{1 - \lambda_2(\mathcal{L})}, & \lambda_2(\mathcal{L}) < 1\\ +\infty, & \text{otherwise.} \end{cases}$

• Structurally balanced \mathcal{G} : $\lambda_1(\mathcal{L}) = 0$.

- \blacktriangleright $\pi_1 = 1$ fixed
- ▶ π_2 depends on $\lambda_2(\mathcal{L})$: algebraic connectivity of \mathcal{G}
- Structurally unbalanced \mathcal{G} : $\lambda_1(\mathcal{L}) > 0$.
 - $\lambda_1(\mathcal{L}) \approx \epsilon(\mathcal{G}): \text{ measure of the structural} \\ \text{ imbalance of } \mathcal{G}$
 - $\lambda_2(\mathcal{L})$: independent from $\epsilon(\mathcal{G})$

Example

Sequence of signed Erdős-Rényi graphs \mathcal{G} with n = 500 nodes.

$$\label{eq:basic} \begin{split} \beta &= \text{percentage of edges with negative sign} \\ \epsilon(\mathcal{G}) &= \text{frustration of the network} \end{split}$$

$$\pi_1 = \frac{1}{1 - \lambda_1(\mathcal{L})}, \quad \pi_2 = \begin{cases} \frac{1}{1 - \lambda_2(\mathcal{L})}, & \lambda_2(\mathcal{L}) < 1 \\ +\infty, & \text{otherwise.} \end{cases}$$

Example

Consider three signed networks \mathcal{G} with n = 20 nodes and different percentages of edges with negative sign given by $\beta = 0.2$, $\beta = 0.4$, $\beta = 0.7$.

	β	frustration $\epsilon(\mathcal{G})$	$\lambda_1(\mathcal{L})$	$\lambda_2(\mathcal{L})$	π_1	π_2	$\pi_2 - \pi_1$
(a)	0.2	0.666	0.065	0.500	1.069	2.000	0.930
(b)	0.4	4.285	0.332	0.491	1.496	1.966	0.470
(c)	0.7	5.536	0.475	0.499	1.905	1.995	0.090

Summary

Model for opinion forming:

- signed network
- saturated sigmoidal nonlinearities
- social effort parameter π

Results

- Nontrivial decision: $\pi > \pi_1$, π_1 grows with the frustration.
- Two alternative decisions: $\pi \in (\pi_1, \pi_2)$. The interval (π_1, π_2) becomes smaller as the frustration grows.

Application

From parliamentary networks to government formation

Parliamentary elections in 29 European countries (1978-2019)

Application

From parliamentary networks to government formation

Parliamentary elections in 29 European countries (1978-2019)

Characterized by:

- negotiation periods;
- coalition governments (enjoying the confidence of the Parliament).

Parliamentary networks

 p_i : political parties winning seats in the Parliament (different sizes)

Parliamentary networks

 p_i : political parties winning seats in the Parliament (different sizes)

Process of government formation

Model for opinion forming: $\dot{x} = -\Delta x + \pi A \psi(x)$

- π : duration of negotiation
- decision: vote of confidence to candidate cabinet

Process of government formation

Model for opinion forming: $\dot{x} = -\Delta x + \pi A \psi(x)$

- π : duration of negotiation
- decision: vote of confidence to candidate cabinet

Previous results:

- $\pi > \pi_1$: nontrivial decision
- $\pi_1 \propto \text{frustration}$

Process of government formation

Model for opinion forming: $\dot{x} = -\Delta x + \pi A \psi(x)$

- π : duration of negotiation
- decision: vote of confidence to candidate cabinet

Previous results:

- $\pi > \pi_1$: nontrivial decision
- $\pi_1 \propto \text{frustration}$

Aim

To predict the duration of "negotiation" period before the government formation

Example: Germany

parliamentary network \mathcal{G}

adjacency matrix A

scenario: all-against-all, weighted

Example: Italy

*Volkens et al. (2018): Manifesto Project, doi: 10.25522/manifesto.mpds.2018b

scenario: pre-electoral coalitions

Conclusions

Model for opinion forming:

- signed network
- saturated sigmoidal nonlinearities
- social effort parameter

Results

• The social effort required to reach a decision grows with the frustration of the network.

The interval for the social effort parameter for which only two alternative decisions are possible becomes smaller as the frustration grows.

Application: process of government formation in 29 parliamentary democracies

Thank you!

Angela Fontan angela.fontan@liu.se

www.liu.se

