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Non-smooth dynamics in optimization algorithmes:

Example: look for solution of Ax=b,
Linearized Bregman (LB):

Zle — tkAT (AZEk — b)

Sx(Zh41), Sx(zr) = max(|zx| — A, 0) sign(zg)

Yin, et al, 2008

5, is a shrinkage or thresholding operator - removes
elements below threshold 4

Found in algorithms seeking sparse solutions, e.g.

compressed sensing, underdetermined problems

Cai et al, 2009
I is a time step

Non-zero entries in solution x! = 7/ + }



Context + Disclaimer:

Many different options for iterative methods in
optimization:

First order methods (e.g. GD), Accelerated (higher order),
stochastic, hybrids, non-smooth (projections, thresholds,
etc)

Convex, hon-convex:

Assumptions for any one method: sparsity, noise,
matrix

Recently, more work from dynamics (and
control) perspectives



Methods motivated by sparsity

Appended constraint for data match

Basis Pursuit min [z, subject to Az =b.

BPDN min ||z||y subject to Ax=0.

Families of methods, e.g. close cousin of LB

X ISTA - Iterative shrinkage (soft) thresholding
k
. — tkAT(Afk — b)

Sx(zk11),  Sx(zr) = max(|zx| — A, 0) sign(zg)

Z1- norm often used for sparse solutions, e.g.
compressed sensing, underdetermined problems

LB + dynamic time step
Lorentz et al 2014

1

min A||x|[; + §H:I:||§ subject to Ax =b



Motivating applications
Large scale problems, with sparse representation:

Witte, et al, 2015

T s
min ||x|; subject to Z |Ji|mo, q;|C™x — b;l|2 < 0.
x —

e.g. Recent results in compressed sensing in seismic imaging
Solution: curvelet transform coefficients x
Large number of source experiments

Linearized - gives error/inconsistencies:
Ax= b+ ¢ Var|e] = o2

Large ill-conditioned system

Background model parameters

Distance (Km)

a) Iteration 21



Motivating applications Large scale problems, with
Focus on LB: sparse representation:

Straightforward implementation

Capitalize on sparsity - rapid progress to sparse solution
Combine with subsampling for large problems

Over-determined Under-determined




Under-determined systems (sub-samples):

Usual gradient descent: may not find sparse solution

Benefit from the presence of “noise”, fluctuations, thresholds

Drawback: does not converge unless noise vanishes

Simple Kaczmarz
Aisnxd e =¢

Randomized block Kaczmarz
- subsampling size m, with
bounds on condition humbers

Needell and Tropp, 2012
(overdetermined, inconsistent, least squares minimization)

Stochastic gradient descent: escape local minima (ML)



Connection with non-smooth dynamics:
Sources of noise/error/variation/fluctuation:
Subsampling:

Inconsistencies: error due to linearization (data
mis-match)

Threshold: search for sparse solution

Evidence of sustained chatter:

Distance (Km) Distance (Km) Distance (Km)

(a) Iteration 21 (b) Iteration 22 (c) Iteration 23




Dynamics for real systems:

Can not reach exact solution: noise + large/
expensive system with finite number of
iterations

Computing stops during a transient in the
algorithm

Want an algorithm that makes fast progress
towards the solution

Not necessarily sparse : compressed sensing-like
(violate certain assumptions for convergence)

In practice, the features that may aid rapid progress may
also impede convergence in later interactions



Chatter:
Search for a virtual equilibrium:

Ex: Thermostat set below ambient temperature
Temp 4

On ambient temp: virtual eq
AL AN\ :
7NN X switch
Off
>
time

Some delay in feedback, otherwise have sliding on switch

1:3

Toy model
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Coherence resonance-type route to chatter

On-off control of balance: Inverted
pendulum with delayed feedback control

Transient oscillations
sustained as spiral via noise

Coherence resonance-
type phenomenon -
sustained transient
oscillations with
characteristic frequency




In optimization context: discrete time steps

In general, want to take as large a time step as

possible for faster convergence
Constant:

Zk+1 — Zk — tkAT (Ailik — b) ||Ak||§
The1 = Sa(2r+1),

| Apzy—bil5

Entries enter and exit the support,
crossing threshold at 4
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Analogy to chatter

Taking finite steps at each stage:

In the inconsistent case: previous step approximation
to over-determined case - no exact solution, only
approximate solution -

Sparse case: entry x' = 0 in exact solution

Will exceed the threshold at some point, but will
(likely) reduce below threshold on next iteration



Test (sparse) problem: track dynamics of entries
Threshold alone does not cause chatter:

In the consistent case, there is

an optimal solution to Ax=b Under-determined system

(0 =0)

i 115 2 215 3
Data passes
(b) Ak: c R25OX1000, oc>0

0 0.5 1 1.5 2 2.5 3 _
Data passes o J————
(a) Akz - R250X1000, c=20 g

Data passes
2000 x 1000
N .

Over-determined (inconsistent)
system 0 # 0

Sparse example, threshold 4



“Wiggle” plots :
classically used for signal traces (in seismic)

Model vs. gradient
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Approaches to address cycling: fluctuations about
a solution

Projection at each step, based on noise level:
Advantage: Eliminates largest of fluctuations,
Disadvantage: Reduces the solution space - some
solutions not allowed, have to approximate the
noise level. (Lorenz, et al, 2014)

Reduce step-size: When, and how! Choose specific
directions of search

Reduce overshoot (used e.g. in SGD)

Disadvantage: Could slow convergence, could be
computationally expense to determine



Evolution in the error vs. sparsity trade-off plane

LB
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Compare to the Pareto cUrve: separates feasible and
infeasible solutions Hennenfent, et al, 2008
Different types of transient behavior - ideally tracking
the Pareto curve (LB uses threshold only in gradient
term - samples transients)




Modified LB (MLB) algorithm

Specific features of regular crossing of threshold:
Frequent change of gradient

In contrast to changes in gradient due to subsampling
or change of gradient due to noise

2l — T © A;(Akxk — bk)

SA(ZR-I-l)a

52 sien([4] (4,2, — b))

k

Factor in definition of the time step: element by
element adjustment of time step

No chatter - no change in time step, progress towards
the correct value continues

Chatter sets in - time step decreases



MLB vs LB
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VS ° rad i e nt -- Consistent - Constant time step

Consistent - Dynamic time step
—Inconsistent - Dynamic time step

Weighted increment - Small value
-~ Weighted increment - Large value
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-~ Consistent - Constant time step
Consistent - Dynamic time step

permietebtd Recall variable time
step: entry dependent

-~ Weighted increment - Large value
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Slow convergence of small entries
s this a problem for sparse solutions!?

In real life, solutions are compressible: entries in solution
decrease in magnitude with some exponent

Implications:
separating solution from noise is tricky when resolving

small entries

Distance (Km)

(c) Iteration 23

Distance (Km)

Distance (Km)

(a) Iteration 21 (b) Iteration 22




Slow convergence of small entries

Typically small entries below threshold - move
slowly to threshold for MLB, due to chatter

removal variable time step

-- Consistent - Constant time step
Consistent - Dynamic time step
—~|nconsistent - Dynamic time step

Weighted increment - Small value
-- Weighted increment - Large value
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MLB+T: Include threshold detection: use entry-
specific time step from MLB only after entry

crosses threshold

MLB+T = LB for entries not yet crossing the threshold



Slow convergence of small entries

Implications: separating small entries from noise

Danger of over-fitting the noise:
Small entries are not

rejected after crossing the
threshold
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Estimate for 4, using dynamics of LB

|. Honing in on large entries
2. Iterate to include small entries - approaching size of noise

3. When to stop to avoid over-fitting of noise!
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Threshold parameter A

Daskalakis,K, Herrmann 2019



Large scale problem:

Distance (Km)

(a) Iteration 21
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(d) Iteration 21, with the proposed
modification

Distance (Km)

(b) Iteration 22
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Distance (Km)

(e) Iteration 22, with the proposed
modification

(c) Iteration 23

Distance (Km)

Distance (Km)
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(f) Iteration 23, with the proposed

modification

LB

MLB

MLBT - similar results for reduction in data passes: | 5-20%

Limitations for approximating A :

Typically level of noise not known - estimates used in LB +

projection

Model error not known - instead residual used



Sources of hon-smooth and stochastic dynamics

Thresholds - connection to sparsity

min ||x||; subject to Ax =2».
xXr

Projections: use of error bounds to reduce search space
Representations: e.g. ReLU commonly used in ML

Online/Streaming Applications:

Network perspectives: ML

Non-convexity - use of methods such as stochastic
gradient descent

(recursive) Layers, CNN’s



DS perspectives:

Landscape perspectives: interacting particle
systems. ( e.g. Rotskoff, et al 2018; Mei, 2019)

Lagrangian formulation for accelerated methods
Wibisono, et al 2016

Direction dependent time step Yezzi, et al 2018

Modified equations: cts approximations of discrete
algorithm + correction - connections to multiple
scale dynamics

Potential for noise sustained oscillations:
accelerated methods, without thresholds



DS perspectives:
Potential for noise sustained oscillations (without thresholds)

Xpy1 = X+ P10 — X)) — 1V, + 5ol — x5 1)
(higher order) methods: e.g. Nesterov, Heavy ball, etc

Inconsistent:

coherence
resonance- 5
type result 5
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