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Why period-doubling cascades
ex|st

Preliminary joint work with R. B. Kellogg and T.-Y. Li 1976
S.N. Chow and J. Mallet-Paret 1978
J. Mallet-Paret 1982 (Snakes, orbit index

Joint work on cascades with Kathy Alligood 1983, 1985
Evelyn Sander 2011, 2013...

This talk uses the term even for non flip hyperbolic orbits
See also my 2013 lecture at “Canada North Bay Summer Top...”



px(1-x)
In a series of papers in 1958-1963, Finish mathematician Pekka
Myrberg (1952 to 1962 the chancellor of the University of Helsinki - Finland) was the
first to discover that as a parameter is varied in the quadratic map,
periodic orbits of periods k, 2k, 4k, 8k, ... occur for a variety of k
values. 1r
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Mitchell Feignbaum’s “universal number” 4.6692...

* the quotient of successive distances between bifurcation events
tends to 4.6692... And the vertical rescaling is about -2.502

Rescale u=3.569946...,x=0.5
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Universal Rescaling of Feigenbaum

* The brilliant asymptotic rescaling ideas of Feigenbaum have been
verified using powerful techniques from complex analysis, thanks to
the combined effort of such mathematicians as Douady, Hubbard,
Sullivan, and McMullen.

* In practice a wide variety of cascades have the same rescaling
eigenvalues that Feigenbaum identified.

* See for example
http://www.math.harvard.edu/library/sternberg/slides/1180904.pdf



http://www.math.harvard.edu/library/sternberg/slides/1180904.pdf

What does Feigenbaum universality say about
the existence of cascades?



Def. A (period-doubling) cascade is a connected
nath of periodic orbits along which the period goes
to infinity.

-or convenience, include no flip orbits in a cascade |
.e. none:with Jacobian withan odd
number of eigenvalues<-1. ﬂgﬁ%
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Cascades for orbits from period 2 to period 6
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Fig. 4. Cascades for F(pu,z) = pax(l — x). The logistic map has infinitely many cascades of attracting periodic orbits, and
all cascades start at the stable orbit of a saddle-node bifurcation. The unstable orbits form what we call the stems of the
cascades (shown in color). Each stem continues to exist for all large p values. By our terminology, this means that all the
cascades shown are solitary (on any parameter interval [u1, p2], for g1 = 3.5 and any p2 > 4) since the stem does not connec
its cascade to a second cascade. The stems are shown here up to period six. Different colors are used for different periods.



Forced damped pendulum
Unstable orbits in red
Then attractors are plotted in black

Time 211 map for IJ
y'+ 0.2y +sin(y) = M cos t
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* Here we investigate only families F(u,x) on R"with pin R that
are generic: i.e. all periodic orbit bifurcations are generic.

* We assume there is one parameter W, for which there are

finitely many periodic points and another ., for which there
is chaos.

“Chaos” here means there are infinitely many regular saddles
(having its unstable eigenvalue > +1). Of course there can also
be infinitely many flip saddles (having its unstable eigenvalue
<-1).
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For maps F(u,x) on R"with pin RL.

Our cascade theorem:
* Assume at one parameter value y, there are only finitely
many periodic orbits, and at another p, there is chaos.
Then between those two parameter values (W, 1,) there
must be infinitely many cascades, with the following
assumptions:

1) F is generic: i.e. all periodic orbit bifurcations are generic.

2) The set of periodic orbits in (p,, 1) is bounded.
3) At u,, all periodic orbits have the same unstable dimension
(including infinitely many unstable regular (non-flip) orbits.
(Finitely many exceptional orbits are allowed.)
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This lecture describes WHY cascades exist, how
many exist, and the large scale connectivity.

* To motivate the method of proof, we now show a constructive proof
of the Brouwer fixed point theorem.

* This 1976 result by RB Kellogg - TY Li - Yorke
was the first constructive or implementable proof.
It shows the spirit of the proof that cascades exist.

* With a later version by Chow, Mallet-Paret, Y Math. of Comp. 32 (1978), 887-899.

* Later extensions by J Alexander-Yorke

e Let B be a smooth convex ball in R". And F;: R"-> R"



Led B besgmootl ball in ‘kn.
Let F:B=2D3 be smecth.
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Thus a fixed point exists.
This path-following method is “essentially” constructive.
Follow the path from almost any g to find a fixed point.



Now apply the methods of that Brouwer Fixed Point Proof to:

Period Doubling Cascades



Mallet-Paret’s orbit index: Orbit index assigns
values to hyperbolic periodic orbits:
+1 (attractors) use orientation >>>
-1 (“regular” saddles) <<<

0 (“flip” saddles) are not followed
 Attracting periodic orbits are on paths with orientation >>>
* Regular saddles are on paths with orientation <<<
* Flip saddles are not on paths.



Periodic Orbit Index (Mallet-Paret & Y 1982)

Our periodic orbit index is a bifurcation invariant.
=+

¢ =+]

Source Hopf

L—' @ @ Bifucation 037 =|

Sink Hopf @
Bifurcaliontb=-l

A snake of periodic orbits: hypothetical example illustrating terminology.



Generic Map-Hopf
bifurcations

can be added

to the menu
without loss.

The path simply

does not see them.

Numerical orbit
tracking ignores
them.

The Hopf bifurcation viewed in PO(F)

Each of these loops corresponds to a loop of periodic orbits in an annulus
The radius of the loop is proportional to the width of the annulus

S

’
o

Hausdorff distance from P

/ As the orbits approach P, the periods approach infinity

A f Continuous arc of periodic orbits through P

Hopf bifurcation orbit P

These loops are all disconnected.

Regular component is locally a one-manifold.
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Generic bifurcations with 1 eigenvalue crossing the unit
circle - path representation- each point is a periodic orbit.

Saddle-node Period-doubling Period-doubling

Saddle-node

(a)

Periodic orbits

(b) (c)
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S= even saddle

AR= attractor or even repellor (has 0 or 2 e-vals <-1)

PD = period-doubling point.

Assume F:
R2+1 N RZ
Assume the
set of periodipcS
points Is
bounded in RZ.
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AR
SN
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We return to the topic of period doubling
cascades, where we apply similar ideas.

K. T. Alligood, J. Mallet-Paret and J. A. Yorke, Families of periodic orbits: Local continuability
does not imply global continuability, J. Differential Geom. 16 (1981), 483-492.

J. Mallet-Paret and J. A. Yorke, Snakes: Oriented families of periodic orbits, their sources,
sinks, and continuation, J. Differential Equations 43 (1982), 419-450.

J. A. Yorke and K. T. Alligood, Cascades of period doubling bifurcations: A prerequisite for
horseshoes, Bull. Amer. Math. Soc. 9J. Announcement.

J. A. Yorke and K. T. Alligood, Period doubling cascades of attractors: A prerequisite for
horseshoes, Comm. Math. Phys. 101 (1985), 305-321.

Evelyn Sander and J. A. Yorke, Period-doubling cascades for Iarge perturbations of Henon
families, J Fixed Point Theory and Applications, 6(1): 153-163, 2009

Evelyn Sander and J. A. Yorke,
Period-doubling cascades galore,
Ergodic Theory and Dynamical Systems, 31 (2011), 1249-1267.

Evelyn Sander and J. A. Yorke, A Period-Doubling Cascade Precedes Chaos for Planar Maps,
Chaos 23, 033113 (2013).
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2 kinds of cascades

*There are two kinds of cascades:
“paired” and
“solitary” (as in the quadratic map).
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* Figures from Sander Yorke 2012 IJBC paper

Fig. 5. Paired cascades in the Hénon map (u,v) — (1.25 — u? + pw,u). The top bifurcation diagram shows a set of four
period-7 cascades. The bottom bifurcation diagram shows the detail of the top part. Only one point of each of the period-7
orbits of the Hénon map are shown so that it is clearer how the two pairs connect to each other. The leftmost and rightmost
cascades form a pair that is connected by a path of unstable regular periodic orbits (shown in red). Likewise, the two middle
cascades form a pair. It is connected by a path of attracting period-seven orbits (blue). Paired cascades are not robust to
moderate changes in the map. "



The hidden part of a period doubling cascade

-05 0 0.5 1 1.5 2
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A more complex cascade pattern:
black for attractors, red for periodic orbits
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Fig. 2. Cascades in the double-well Duffing equation. The attracting sets (in black) and periodic orbits up to period ten (in
red) for the time-2m map of the double-well Duffing equation: z”(t) + 0.3z (t) — z(t) + (z(t))? + (x(t))® = psint. Numerical
studies show regions of chaos interspersed with regions without chaos, as in the Off-On—Off Chaos Theorem (Theorem 5).
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Forced damped pendulum

Fig. 3. The forced-damped pendulum. For this figure, periodic points with periods up to ten were plotted in red for the time-27
map of the forced-damped pendulum equation: =" (t) + 0.2z’ (t) +sin(z(t)) = pcos(t), indicating the general areas with chaotic
dynamics for this map. Then the attracting sets were plotted in black, hiding some periodic points. Parameter ranges with
and without chaos are interspersed.
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Cascades for each orbit up to period 6
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Fig. 4. Cascades for F(pu,z) = pax(l — x). The logistic map has infinitely many cascades of attracting periodic orbits, and
all cascades start at the stable orbit of a saddle-node bifurcation. The unstable orbits form what we call the stems of the
cascades (shown in color). Each stem continues to exist for all large p values. By our terminology, this means that all the
cascades shown are solitary (on any parameter interval [p1, p2], for g1 = 3.5 and any p2 > 4) since the stem does not connegt
its cascade to a second cascade. The stems are shown here up to period six. Different colors are used for different periods.



