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Data assimilation (DA) in the geosciences [RNEYIEI

Data assimilation (DA) in the geosciences

‘Schematic for Global
Atmospheric Model

Data assimilation
best combines
observations and models

An ongoing expansion from numerical weather prediction to the climate

science/geosciences:

@ Oceanography
@ Atmospheric chemistry
@ Climate prediction and assessment

@ Glaciology

@ Hydrology and hydraulics
@ Geology
@ Space weather

@ and many other fields
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Data assimilation (DA) in the geosciences Introduction

DA as used in climate/atmosphere/ocean

» In the geosciences: Dynamical numerical models are often computationally costly.

» In the geosciences: The state space and observations space are huge (up to 109/107
for operational systems, up to 107/10° for research systems). A big data problem with
costly models to integrate.

» What for?: estimate initial state of chaotic systems for forecasting, re-analysis,
parameter estimation (~ inverse modelling).

» Data assimilation for forecasting chaotic geofluids: sequential schemes

Observation Observation

Model (forecast) Model (forecast)

Model (forecast)

» This design is the implicit consequence of the unstable dynamics of chaotic geofluids!
With this notable expection, DA schemes use models as black boxes.
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Data assimilation (DA) in the geosciences [JQII{eIIITaaTEN]

Mathematical methods in DA

» Introduction of mathematical methods in operational numerical weather prediction:

195 1975 1998 2005 2015

Hybrid /EnVar|

L 4

@

Optimal Interpolation|

Obj
3D-Var

» Using increasingly complex mathematical methods and increasingly resolved
high-dimensional models.
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Data assimilation (DA) in the geosciences Introduction

Data assimilation system

» Data assimilation system = observation and evolution models + statistics of the
errors. Typically:

Xk = M1 (xk—1) + 1
Yi = Hi(xi) + &
with 1 NJV(O,Qk) and & NJV(O,Rk).

Past Future

» Denoting xx.1 = X1,X2,...,XK, YK:1 = ¥1,¥2,---, YK
@ Prediction: Estimate x, for k > K, knowing ygk.1;
@ Filtering: Estimate xy, knowing ygk.1;
@ Smoothing: Estimate xx.1, knowing yk.1.

SIAM Conference on Applications of Dynamical Systems, May 19-23 2019, Snowbird, Utah, USA 6 /39



Data assimilation (DA) in the geosciences [EIDAVETS

4D-Var (optimal control)

» Strongly constrained 4D-Var, i.e. assuming the model is perfect

1 1 K K
J(x0) = 5 llxo — x6lI3-1 + > Y lye— Hk(xk)H2R;1 + Y Ak (k1 — Mgk (x)-
k=1 =1

» Fits a model trajectory through the 4D data

points.

» In high-dimensional spaces, requires Vy,J for
an efficient minimisation. But Vy,J depends
on the adjoint of My 1., and H.

» Weakly constrained 4D-Var, i.e. assuming the model is imperfect

*

- truth

4D-Var

observation
analysis

1 1 ¥ 1 ¥
J(xk:0) = Sllxo—xqlF1+= ¥ vk — He(xi) a2+ Y lIxk— Mk:k—l(xk—l)H?) 1.
2 2 Prr K 2 = K
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Data assimilation (DA) in the geosciences EEEIN=IT

The ensemble Kalman filter (EnKF)

» Mimics the Kalman filter (KF) but replaces the forecast error covariance matrix by

Pf~ XX/ where X = 07X g i—l)ix(-)
~ = — o
vm—1 mi=

» The stochastic EnKF is the closest to traditional KF, but adds stochastic
perturbations to the observations of each members [Burgers et al., 1998]:

f f

X?’-) = X(’-) + K (y+€(,) — HX(,)) .
» The deterministic EnKF avoids the stochasticity by updating the square root of P,
i.e. Xg . One of the variant (ETKF, [Hunt et al., 2007]) operates the linear algebra in the
space of the perturbations (Y= HX¢):

-1
x® =x"+X;w? where w= (Im +YfTR71Yf) Y/R! (yf fo) ,

The perturbations around the mean are updated via

_1
xa:xf(|m+YfTR*1Yf) 2U, where UcO(m) and Ul=1.
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Data assimilation (DA) in the geosciences EEEIN=IT

The downside of the EnKF: rank-deficiency

» Sampling errors: replacing Pf by XfoT is in practice rank-deficient and generates

spurious correlations for distant state components. If P = XfoT and B is the true error
covariance matrix of a Gaussian process:

Cov ([P;i, [P]}) = [B],ﬁ Cov ([P];,[P];) = N 1 ([B] + [B]ii[B]jj)~
For geophysical systems, we know that most long-range correlations are dampened
exponentially. Consequently, the covariances are misestimated (too low variances, too

high long-range covariances) and leads to the divergence of the EnKF.
— Practically, this is solved using two fixes: inflation and localisation.

» Inflation consists in inflating the covariances by a scalar in the hope to compensate
for the underestimation of the error statistics [Pham et al., 1998, Anderson et al., 1999]:

X(j) < X(iy T2 (x(,-) —i) .
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Data assimilation (DA) in the geosciences Hybrid and EnVar

Hybridising ensemble and variational methods

» A collection of algorithms meant to capture
the best of variational and ensemble filtering
techniques:

EDA EPS

4D-Var trajectories.
First guesses

» Hybrid covariance schemes

Surface pressure

» 4D-LETKF 7
» Ensemble of data assimilation (EDA) — \7
» 4DEnVar Observation . | Obs‘mm |

> |En KS 09z 122 152 182 2z S

Assimilation window Forecast

» Several of these methods do not require an explicit model adjoint, which is a strong
motivation in operations

» Mathematically, an EnVar method such as the IEnKS combines (in addition to
avoiding the adjoint):
@ a nonlinear variational analysis (like 4D-Var),

@ a flow-dependent representation of the error (like the EnKF).
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Data assimilation (DA) in the geosciences Hybrid and EnVar

The iterative ensemble Kalman smoother (IEnKS)

» Reduced scheme in ensemble space, xg = xf + X;w, where X is the ensemble
perturbation matrix:

Jw) = J(X 4+ Xsw).
» Analysis IEnKS cost function in ensemble space:

1

SN =1) w?.

~ 1 ¢ -
Jw) =5 Y vk = Heo Myco (R +Xw) |2 oo+
k=1

{Bo,P1,--.,BL} weight the observations impact within the window.

» As a variational reduced method, one can use Gauss-Newton [Sakov et al., 2012],
Levenberg-Marquardt [Bocquet & Sakov, 2012], quasi-Newton, trust region, etc.,
minimisation schemes.

» Perturbation update: same as the ETKF

Ey=x31T + VN xf[v2ﬂ U where UcO(N) and UL=1.
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Data assimilation (DA) in the geosciences References
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DA and the dynamics: evidences

Data assimilation and the dynamics

» So far, the model has (essentially) been considered as a black box.

» The atmosphere and ocean exhibit chaotic dissipative dynamics: Highly state-dependent error
growth. DA must track and incorporate this flow-dependency in the quantification of the
uncertainty (i.e. error covariances).

» Dissipation induces dimensional reduction: The error dynamics are confined to a subspace of
much smaller dimension, ny < m: the unstable subspace. The existence of the underlying
unstable-stable splitting of the phase space expected to have critical impact on the efficiency
and accuracy of DA.

— A set of ideas put forward and initially developed by Anna Trevisan et al. [Trevisan et al.
2004-2015; Palatella et al., 2013], and called AUS (assimilation in the unstable subspace).

Motivations

» Is there any fingerprint of the unstable subspace on the fate of the (En)KF and the (En)KS?
» Understand the interaction between DA and the dynamics.

» Can dynamical properties be used to design computationally cheap DA schemes?
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DA and the dynamics: evidences

DA and the dynamics: the linear and scalar case

» Analytical formulae for the forecast and analysis variances can be obtained in the
linear, diagonal dynamics case [Fillion et al. 2018]

0.6
0.5
0.4
2 03
0.2

0.1

0.0

== |EnKS unstable == 4D-Var unstable
IEnKS stable -==- 4D-Var stable
— |EnKS ——— 4D-Var

» 4D-Var is impacted by its imperfect representations of the error stable modes as
opposed to the IEnKS [Talagrand et al., 2010; Fillion et al. 2018].
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DA and the dynamics: evidences

Nonlinear chaotic models: the Lorenz-96 low-order model

10.0
7.5
5.0
25
0.0
=25
=5.0
=75

» It represents a mid-latitude zonal circle of the global atmosphere.

» Set of M =40 ordinary differential equations [Lorenz and Emmanuel 1998]:

B0 — (i1 —xm -2 1 —xm &)

where F =8, and the boundary is cyclic.
» Conservative system except for a forcing term F and a dissipation term —xp,.
» Chaotic dynamics, 13 positive and 1 neutral Lyapunov exponents, a doubling time of

about 0.42 time units.
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DA and the dynamics: evidences

Nonlinear chaotic model

T 5

e
sl \\\ = 1,
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Ensemble size

Average root mean square error

Mean angle with the unstable-neutral subspace

» Average angle (in degrees) between a perturbation (from the ensemble) and the
unstable-neutral subspace as a function of the DAW length (IEnKS, Lorenz-96), as well
as the corresponding RMSE of the analysis.
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Impact of the dynamics on DA: linear dynamics
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© Impact of the dynamics on DA: linear dynamics

@ The degenerate Kalman filter

@ Collapse onto the unstable ensemble
@ Asymptotics

@ Generalisations

@ The smoother case
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Impact of the dynamics on DA: linear dynamics [EIEREEHENEl L EL RIS

Linear case: Degenerate Kalman filter equations

» Model dynamics and observation model:
xg = Myxp_1 +wyg, (2)
Yk = Hixp + vy (3)

The model and observation noises, wy and vy, are assumed mutually independent,
unbiased Gaussian white sequences with statistics

E[vkv/] =8 /Re, Elwiw,]=8Qx, Elviw;]=0. (4)
» Forecast error covariance matrix Py recurrence of the Kalman filter (KF)
_ T
Prr1 =Myt (14+PeQ) T PeM L+ Qpyr, (5)
where .
Q =H, R, 'H, (6)

are the precision matrices and Pg can be of arbitrary rank.

» In the case Q, =0, it was proven that the full-rank KF Py collapses onto the
unstable subspace [Gurumoorthy at al. 2017].

» Still in the case Q, =0, it will be generalised in the following and for degenerate Pg
required to connect to reduced-order methods such as the ensemble Kalman filter
(EnKF) [Bocquet at al. 2017].
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Impact of the dynamics on DA: linear dynamics Collapse onto the unstable ensemble

Result 1: Bound of the covariance free forecast

» Simple inequality in the set of the semi-definite symmetric matrices

T —
Py <My oPoM, o+ =, (7)

where p
Zp=0 andfork>1 Z,=Y My,QM,, (8)

=1

is known as the controllability matrix [Jazwinski, 1970].
» In the absence of model noise (Qy = 0 for the rest of this talk), it reads
Pi < MioPoM,q. (9)
Assuming the dynamics is non-singular
Im(P ) = My (Im(Po)) . (10)
If ng is the dimension of the unstable-neutral subspace, it can further be shown that

klim rank(P ) < min{rank(Pg),no} . (11)
—o0
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([UERERR RPN WOV A IS PV Collapse onto the unstable ensemble

Result 2: Collapse onto the unstable subspace

» Let G,-k, for i=1,...,n denote the eigenvalues of P, ordered as le > 0'2’(--- > 0',’,‘. We

can show that
G,-k < o;exp (2kll~k) (12)

where k)L,-k is a log-singular value of M.q and Iimkﬁwlik = A;. This gives an upper
bound for all eigenvalues of P, and a rate of convergence for the n— np smallest ones.

» If P, is uniformly bounded, it can further be shown that the stable subspace of the
dynamics is asymptotically in the null space of Py, i.e. for any vector uy.q in the stable

subspace
lim ||Pxug.ol =0. (13)
k—so0
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Impact of the dynamics on DA: linear dynamics [AEVITIY

Result 3: Explicit dependence of P, on Py

» Using either analytic continuation or the symplectic symmetry of the linear
representation of covariances, we have proven that

-1
Pi = MicoPoMJ (14 TeMioPoMyo) - (14)
where
k=1 »
M= Y M, M. (15)
=0
» An alternative is .
Py =My.oPo [I+©,Po] ' M, (16)
where
T k=1 T
Ok = Mk:ol'kMk:O = Z M/;OQIM/;0~ (17)
1=0

is the information matrix, directly related to the observability of the DA system.
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Impact of the dynamics on DA: linear dynamics [AEVITIY

Result 4: Asymptotics of Py

» Questions: Under which conditions does P forget about Py = XOXJ? Can we
analytically compute its asymptotics?

» We proposed a sufficient set of conditions

@ Condition 1: Assume the forward Lyapunov vectors at ty associated to the
unstable and neutral directions are the columns of V g € R™™. The condition
reads

rank (XJV+,O) = ng. (18)

@ Condition 2: The model is sufficiently observed so that the unstable and neutral
directions remain under control, that is

UL, MUy > el (19)

where U is a matrix whose columns are the backward Lyapunov vectors related
to non-negative exponents and € > 0 is a positive number.

@ Condition 3: For any neutral backward Lyapunov vector uy, we have
lim uZI’kuk = oo, (20)
k—voo

i.e. the neutral modes should be sufficiently observed.
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Impact of the dynamics on DA: linear dynamics [AEVITIY

Result 4: Asymptotics of Py

Under these three conditions, we obtain

-1
- T T
klinm{Pk Uik [U+,krkU+,k] U+,k} =0. (21)

The asymptotic sequence does not depend on Pg, only ;!

» Peculiar role of the neutral modes (arithmetic convergence).

» Numerical illustration and verification
(b) Uni lity of

5

10 T T T T T T

—r =t
—ny<ry=ry<n

— 1y * 1,

o
- ry=ry<ng

=n

>

Frobenius norm of the difference

0 100 200 300 400 500 600 700 800 900 1000

Assimilation count

Linearized Lorenz-96 model
around a Lorenz-96 trajectory.

Frobenius norm of the difference
between two different Pg

when the conditions are satisfied,
ie [Py —PR.
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Impact of the dynamics on DA: linear dynamics Generalisations

From the degenerate KF to the square-root EnKF

» Normalised perturbation decomposition:
Pr= XX, . (22)
» Square-root formulation; right-transform update formula:
T -1/2
Xi = My.oXo [l +X{ ekxo] v, (23)

where W, is an orthogonal matrix.
» Square-root formulation; left-transform update formula:

-1/2
Xy = [14+-MycoPoM[oT k]~ MioXoW. (24)

» With linear models, Gaussian observation and initial errors, the (square-root)
degenerate KF is equivalent to the square-root EnKF and can serve as a proxy to the
EnKF applied to nonlinear models.
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Impact of the dynamics on DA: linear dynamics [ERIGTERET Il TR

Degenerate square root Kalman smoother

Yis Yi—2
ty O—O——O0O0—— 00— @@=
I ta
SAt Vi Y
LT O—O0—0—0— @@
iy L
SAt Vi1 Yi+2

LAt

» The scheme at a glance, variational correspondence (x =Xy + X,w) :

. 1 k+L _ 5 1 5
I (w) = > ) HY/—H/M/:k(xk+XkW)||R,+§ [l
I=k+[-S+1

» From the Hessian of j

N N k+L
IN+XZQka where Qké Z M;l:—kQ/M/:k7
I=k+L-5+1

we infer )
TA 2
Xirs =Mpp s X (lN + Xy Qkxk) v
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Impact of the dynamics on DA: linear dynamics [ERIGTERET Il TR

Degenerate square root Kalman smoother

» The convergence rate of the collapse of P, of the smoother is not expected to be
faster than the filter's: the bounding rate is the same.

» However the accuracy of the smoother for re-analysis is expected to be better which
should impact the asymptotic sequences. Indeed we have, for k =pS, p=0,1,...:

li
k—o0

_1
m {Xk —Uyk [Ul,krku-&-,k] ’ ‘l’k} =0.

» The only difference is in the observability matrix Fk, for k=pS, p=0,1,...

R kAleS )
Me=T+ Y M QM.
1=k
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Further numerics with nonlinear dynamics
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@ Further numerics with nonlinear dynamics
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Further numerics with nonlinear dynamics

Spectrum of the analysis error covariance matrix

020
©—O EnKF
1, filtering
1, smoothing
[o= 0.15
=1

0.10

Normalized mean eigenvalues
°
el

Normalized mean eigenvalues

N

AN

» Time-average spectra of P}:

10 15 2 25
Eigenvalue rank r

10

A visible transition at r = 15.

15 5
Eigenvalue rank r
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Further numerics with nonlinear dynamics

Nonlinear chaotic model

50

EnKF
G—o IEnKS, L=30, S=1, filtering
&8 IEnKS, L=30, S=1, smoothing

40

30

20

E—8—8—F&

0.001 0.01 0.1 1 10
Observation error standard deviation

Mean angle with the unstable-neutral subspace

» Average angle (in degrees) between a perturbation (from the ensemble) and the
unstable-neutral subspace as a function of the observation error (EnKF and IEnKS,
Lorenz-96, At =0.05, R=c2l N = 20).
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Further numerics with nonlinear dynamics

Nonlinear chaotic model

4

EnKF
G—o IEnKS, L=5, S=1, filtering
@—& [EnKS, L=5, S=1, smoothing

Mean angle with the unstable-neutral subspace

0.2 0.3 0.4 0.5
Time interval between updates

» Average angle (in degrees) between a perturbation (from the ensemble) and the
unstable-neutral subspace as a function of the interval between updates (EnKF and
IEnKS, Lorenz-96, R = 10~*1, N = 20).
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Impact of the dynamics on DA: noisy models
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© Impact of the dynamics on DA: noisy models
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Impact of the dynamics on DA: noisy models

Error in stochastic models: role of the instabilities?

Xk = Mick-1(xk-1) + 0, M € 47(0,Qx)
» Asymptotic uncertainty in the stable BLVs no longer zero, but still bounded.

» However, the error bounds depend on [Grudzien et al. 2018a]
(i) the model error size (i.e. ||Q]]), and (ii) the variance of the local LEs (LLEs).

‘ -+ . Positive  --. Negative — — \I/['_]
10° A;=-0.0433 2;=-0.0878 100
=107 ) 107
10! 10t
0.8 std=0.142 std=0.133 0.8

0 2000 4000 6000 8000 10000 O 2000 4000 6000 8000 10000
Time Step k Time Step &

m=10 and np =4
» If the noise is large and/or the LLEs have high variance, the bounds will be impractically large.

» In noisy systems it is necessary to include weakly stable BLVs of high variance.
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Impact of the dynamics on DA: noisy models

Error in stochastic models: an upwelling effect

» Will the necessary increase N = ng — ng -+ nys also be sufficient?

» Write the model propagator in the basis of the BLVs using the recursive QR decomposition
M, = ExULEl, E,=(ELE}) with Uy = <‘gkf 3%)

and partition the error into filtered/unfiltered variables £ = Ef(ef( +Eje}

» The error in the filtered space (“seen” by DA) is given recursively by [Grudzien et al. 2018b]

f ff ff fof ff b f fi ff
€rr1 = (U1 — Ui KiHkEL ey — U KieeR +m + (U — Up K HE e
» The terms in black correspond to the usual KF-like recursion and highlight the stabilizing
effect of DA [Carrassi et al. 2008].

» The terms in red disappear when the filtered subspace is the entire state space (n= m).
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Impact of the dynamics on DA: noisy models

Error in stochastic models: an upwelling effect

» When n < m, they represent the dynamical upwelling of the unfiltered error into the
filtered variables [Grudzien et al. 2018b].

» This phenomenon occurs whenever n < m, but is exacerbated by stochastic noise.

» Leads to underestimating the error in the (En)KF = Inflation required

3.62

1.56

RMSE

0.2
0.15

7714 15 16 17 18 19 20 21 22 23 24 25 26 27 28

> EKF-AUS o Obs err SD
»— EKF-AUSE EKF

\M

Correction rank

EKF solves the full-rank recursion.

EKF-AUS solves the low-rank recursion
without upwelling (black terms only).

EKF-AUSE solves the low-rank recursion
with upwelling (black+red terms).
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Conclusions and more
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Conclusions and more

Conclusions and more

» We have shown that, in deterministic/noiseless dynamics, the (En)KF/(En)KS and
their iterative variants naturally project the uncertainty on the unstable-neutral
subspace = N = ng members are sufficient.

» This shows that the EnKF/EnKS naturally implement the AUS program (without
expliciting the Lyapunov filtration).

» In stochastic/noisy dynamics, weakly stable modes of high variance must be included.
Furthermore we have demonstrated the existence of an upwelling of uncertainty from
unfiltered-to-filtered subspace that motivates the need for multiplicative inflation.

» Much more on the topic in the minisymposia MS172 Data and Dynamics: Dynamical
Systems Techniques in Data Assimilation - Part | & |, this afternoon, Ballroom 1.
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Conclusions and more

Conclusions and more

» This was the state of the art 2 years ago about DA and DS ...

» Since then, machine learning made its way to data assimilation, and a new hot topic
is the convergence of DA, DS and ML. For instance, DA could be used to infer the
ODEs or PDEs of dynamical systems from partial and noisy observations [Bocquet et al.,
2019], or use deep learning in combinaison with DA [Brajard et al., 2019].

reference minus surrogate

Time (Lyapunov unit)
Many open questions: How many required dof in the surrogate model? Ergodic
properties of the surrogate models? Numerical stability (stiffness)? Can it be used as a

substitute for the model in DA schemes?
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