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Mid-Pleistocene Transition (MPT)
Change in glacial cycle periods:
41 kyr before 1200 kyr BP, ∼100 kyr after 700 kyr BP
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Proposed mechanisms for MPT

The MPT due to parameter shift: Saltzman models (1987-1991),
Paillard (1998), Paillard & Parrenin (2004), Tzipermen & Gildor (2003),
Widiasih, Stuecker, & Baek (2018) [MS125, next talk], Morupisi &
Budd [CP9]

I slow decrease of background atmospheric CO2 concentration
I change in bottom water (NADW) formation
I gradual cooling of deep ocean allowing for sea-ice switch mechanism
I change in critical temperature for ice formation
I varying amplitude and frequency of periodic forcing

The MPT as a spontaneous transition: Huybers (2009)
I glacial variability as a chaotic response to obliquity forcing
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A delay model for the Pleistocene climate

Ẋ (t) = −pX (t − τ) + rX (t)− sX (t − τ)2 − X (t − τ)2X (t)

X - Global Ice Mass (anomalies)

Parameters:
p - CO2 dependence on North Atlantic Circulation
r - balance of CO2 exchange
s - asymmetry
τ - delay from feedback processes associated with ice accumulation and decay,
and carbon storage and transport in the deep ocean

Derived from Saltzman and Maasch (1988)
I Three-dimensional ODE model
I Ice mass, atmospheric CO2, ocean circulation
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Unforced solutions of DDE model
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Bistable region: 1.295 < τ < 1.625 (p = 0.95, r = 0.8, s = 0.8)
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Periodic forcing

Ẋ = −0.95X (t − τ) + 0.8X (t)− 0.8X (t − τ)2 − X (t − τ)2X (t)− uF (t)

F (t) = sin(ωt − φ), ω = 2π
4.1 , φ ∈ [0, 2π]

Results:
I Two responses - periodic and quasiperiodic/chaotic
I Transition due to moving basins of attraction
I Calculation of intersection of a stable manifold of a saddle

with a slow manifold in a DDE
I Embedding the algorithm for planar maps (England et al,

2004) into the equation-free framework (Kevrekidis et al,
2009)

CQ, J. Sieber, & A. S. von der Heydt, (2019). “Effects of forcing on a
Paleoclimate delay model” arXiv: 1808.02310 (to be published in SIADS)
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Milankovitch forcing

Precession ≈ 19/23 kyr, Obliquity ≈ 41 kyr, Eccentricity ≈ 100/400 kyr

Huybers, P. and Eisenman, I. 2006. Integrated Summer Insolation Calculations.

Ẋ = −0.95X(t − τ) + 0.8X(t) − 0.8X(t − τ)2 − X(t − τ)2X(t)−uM(t)
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Small- and large-amplitude response
τ = 1.3, u = 0.25

τ = 1.45, u = 0.25

τ = 1.6, u = 0.25

Red trajectory shows quasisteady state taken for τ = 1.25, u = 0.25
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MPT-like transition
Model output (blue) compared to climate record (grey)
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Example of realisation that has similar features to observations:
I small amplitude oscillations with period ≈ 41 kyr
I transition just after 1 Myr BP
I large amplitude oscillations with asymmetric shape and period ≈ 100 kyr



Title to go here

Body copy to go here

Varying forcing strength

τ = 1.45

Transition in forcing strength - threshold behaviour

Transition in time - preferred time for transition to large-amplitude response
700-800 kyr BP
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Non-smooth saddle-node bifurcation in quasiperiodically
forced maps

Jäger, 2009 - Invariant circles approach each other with an exponential evolution of
peaks, “strange non-chaotic attractor”

Example of map that undergoes non-smooth saddle-node bifurcation:

(θ, x) 7→ (θ + ω, fβ(θ, x))

ω =
√

5− 1
2

(2π), fβ(θ, x) = arctan(αx)− 2β − γ[sin(2πθ) + 1]

Figures created by J. Sieber based on Furhmann, Gröger, Jäger, 2017
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Finite-time truncation of non-smooth saddle-node
bifurcation

Video of pullback attractor and nonautonomous saddle for
increasing u



Title to go here

Body copy to go here

Finite-time truncation of non-smooth saddle-node
bifurcation

Figures created by J. Sieber
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Finite-time Lypapunov Exponents (FTLEs)
F. Remo, G. Furhmann, & T. Jäger (2019, arXiv:1904.06507) studied the
behaviour of FTLEs when approaching the non-smooth saddle-node
bifurcation in quasiperiodically forced map [PP2]
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bifurcation parameter β ≈ 0.2752 bifurcation parameter u ≈ 0.0755
F. Remo, G. Furhmann, & T. Jäger (2019) Quinn et al DDE
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Distribution of FTLEs for increasing window length

Bifurcation parameter u ≈ 0.0755

u = 0.01 u = 0.075
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Relative frequency of positive FTLEs
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Conclusions

I Dynamics of glacial cycles during the Pleistocene can be modelled
through scalar DDE for ice mass.

I Existence of bistable region with equilibrium and large amplitude
periodic orbit.

I The quasiperiodically forced model consistently transitions within
the time window for the MPT (large range of parameters and noise)
- no parameter shift necessary.

I This transition resembles a finite-time truncation of a non-smooth
saddle-node bifurcation observed in some quasiperiodically forced
maps

I Relative frequency of positive FTLEs can potentially be used as an
identification of bifurcation ocurrence and early warning signal for
transition (work in progress)
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Fuhrmann, G., Gröger, M., & Jäger, T. (2018). Non-smooth saddle-node
bifurcations II: dimensions of strange attractors. Ergodic Theory and
Dynamical Systems, 38(8), 2989-3011.

Quinn, C., Sieber, J., von der Heydt, A. S., & Lenton, T. M. (2018), The
Mid-Pleistocene Transition induced by delayed feedback and bistability.
Dynamics and Statistics of the Climate System. 3(1). 1-17.

Quinn, C., Sieber, J., & von der Heydt, A. (2018). Effects of periodic
forcing on a Paleoclimate delay model. arXiv preprint arXiv:1808.02310.
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