Mechanisms of the Emergence of Extreme Harmful Algal Blooms

Subhendu Chakraborty¹, Rajat Karnatak², Stefanie Moorthi³, <u>Ulrike Feudel⁴</u>

¹Aqua, Danish Technical University, Kopenhagen, Denmark

²Leibniz-Institute for Freshwater Ecology and Fisheries, Germany

³Planktology, ICBM, Carl von Ossietzky University Oldenburg, Germany

⁴Theoretical Physics/Complex Systems, ICBM, Carl von Ossietzky University Oldenburg, Germany

Extreme events

usual

extreme event (ExEv): rare but recurrent events characterized by a large impact on a particular system

typical examples:

Harmful Algal Bloom (HAB) Epileptic Seizures (ES)

unusual

time

Harmful algal blooms (HABs)

HAB: Large abundance of a potentially toxic plankton species

Gullmar Fjord in the Skagerrak. [Belgrano et al. 1999 Proc. R. Soc. London B]

Harmful algal blooms and climate change

[Anderson et al., 2012]

Increase in the number of events

Possible causes: > Eutrophication: increase of nutrient input

- Warming oceans
- Invasion of new species
- Changes in wind patterns

Study of trigger mechanisms of HABs are necessary

Important factors influencing HABs

Dynamics of the excitable plankton model

Plankton bloom is only triggered for particular initial conditions, when zooplankton has a low initial abundance

To model HABs: Include nutrients, preference of zooplankton, competition between toxic/non-toxic species

Modeling of plankton blooms

Nutrients: dN/dt = upwelling – uptake + recycling Phytoplankton: dP/dt = uptake – grazing – mortality - sinking Zooplankton: dZ/dt = growth – mortality

Impact of selective feeding

Even with inclusion of the dynamics of nutrients the dynamics is excitable - but in a different way

Excitability of second kind

Exists in the neighborhood of subcritical Hopf bifurcations

Combining periodic nutrient input and noise

Nutrient input changes with the seasonal cycle due to changes in vertical mixing [K. Wiltshire et al., 2010]: $N_0(t)=N_0 \cos(2\pi t/365)$

Zooplankton mortality changes on a daily basis [Beninca et al. 2011]: Mortality rate d(t) = d + η_t ; η_t – white Gaussian noise

Toxin experiments

Toxic effects of *Alexandrium* on zooplankton grazers:

[M. Busch et al. in preparation.]

Additional feedback between harmful species on the grazer: toxin kills predator

Strong direct toxic effect (negative feedback) is not beneficial → killing the grazer by toxins leads to an advantage for the non-toxic species, who in turn suppresses the toxic one

Toxin production induces HAB irregularity

- Irregularity of harmful algal blooms is induced by the direct toxic effect
- Strong direct toxic effect is not beneficial → killing the grazer by toxins leads to an advantage for the competitor

Consequences of toxins for the dynamics I

Increasing toxicity

Consequences of toxins for the dynamics II

Increasing toxic effect makes toxic blooms rarer and more severe

Analogy to another model exhibiting extreme events: coupled FHN oscillators

Comparison to the HAB model

Increasing toxicity

Conclusions

- HABs can be modelled based on ideas of excitable systems known from neurodynamics
- ➤ competition between different species + seasonal cycle of nutrients + stochastic zooplankton → qualitatively correct dynamics
- ➢ Incorporating the impact of toxicity on the growth of the grazers → rare blooms even in a deterministic setting
- The larger the toxicity, the rarer and more severe are the HABs
- Dynamics of this specific model shares many properties with paradigmatic models exhibiting the emergence of extreme events