How environmental randomness can reverse the trend

Edouard STRICKLER (Université de Neuchâtel, Switzerland)

joint work with Michel Benaïm

SIAM DS19, Snowbird

20 May 2019

Edouard STRICKLER

Randomness can reverse the trend

SIAM DS19, Snowbird

• a disease spreads out in a population

- a disease spreads out in a population
- 2 groups in the population

- a disease spreads out in a population
- 2 groups in the population
- $x_t \in [0,1]$ (resp. y_t) the proportion of infected people in group 1 (resp. 2) at time $t \ge 0$.

- a disease spreads out in a population
- 2 groups in the population
- $x_t \in [0,1]$ (resp. y_t) the proportion of infected people in group 1 (resp. 2) at time $t \ge 0$.
- evolution

$$\frac{dx_t}{dt} = (1 - x_t)(ax_t + by_t) - \alpha x_t$$
$$\frac{dy_t}{dt} = (1 - y_t)(cx_t + dy_t) - \beta y_t$$

with some initial condition $x_0 = x, y_0 = y$.

- a disease spreads out in a population
- 2 groups in the population
- $x_t \in [0,1]$ (resp. y_t) the proportion of infected people in group 1 (resp. 2) at time $t \ge 0$.
- evolution

$$\frac{dx_t}{dt} = (1 - x_t)(ax_t + by_t) - \alpha x_t$$
$$\frac{dy_t}{dt} = (1 - y_t)(cx_t + dy_t) - \beta y_t$$

with some initial condition $x_0 = x, y_0 = y$.

• The **Environment** corresponds to the coefficients $a, b, c, d, \alpha, \beta > 0$.

Deterministic dichotomy

Theorem (Lajmanovic-Yorke)

Write

$$F(x,y) = \begin{cases} (1-x)(ax+by) - \alpha x\\ (1-y)(cx+dy) - \beta y \end{cases}$$

Edouard STRICKLER

Write

$$F(x,y) = \begin{cases} (1-x)(ax+by) - \alpha x\\ (1-y)(cx+dy) - \beta y \end{cases}$$

Note that F(0) = 0: 0 is the Disease Free Equilibrium

Write

$$F(x,y) = \begin{cases} (1-x)(ax+by) - \alpha x\\ (1-y)(cx+dy) - \beta y \end{cases}$$

Note that F(0) = 0: 0 is the Disease Free Equilibrium $A = DF(0), \lambda(A) = \max\{Re(\lambda) : \lambda \in Sp(A)\}.$

Write

$$F(x,y) = \begin{cases} (1-x)(ax+by) - \alpha x\\ (1-y)(cx+dy) - \beta y \end{cases}$$

Note that F(0) = 0: 0 is the Disease Free Equilibrium $A = DF(0), \lambda(A) = \max\{Re(\lambda) : \lambda \in Sp(A)\}.$

③ $\lambda(A) \leq 0 \Rightarrow \forall (x_0, y_0) \in [0, 1]^2, (x_t, y_t) \rightarrow 0$, *i.e* 0 is Globally Asymptotically Stable

Write

$$F(x,y) = \begin{cases} (1-x)(ax+by) - \alpha x\\ (1-y)(cx+dy) - \beta y \end{cases}$$

Note that F(0) = 0: 0 is the Disease Free Equilibrium $A = DF(0), \lambda(A) = \max\{Re(\lambda) : \lambda \in Sp(A)\}.$

- $\lambda(A) \leq 0 \Rightarrow \forall (x_0, y_0) \in [0, 1]^2, (x_t, y_t) \rightarrow 0$, *i.e* 0 is Globally Asymptotically Stable
- ② $\lambda(A) > 0 \Rightarrow \exists (x^*, y^*) > 0, \forall (x_0, y_0) > 0, (x_t, y_t) \rightarrow (x^*, y^*), i.e (x^*, y^*) is$ Globally Asymptotically Stabe

Write

$$F(x,y) = \begin{cases} (1-x)(ax+by) - \alpha x\\ (1-y)(cx+dy) - \beta y \end{cases}$$

Note that F(0) = 0: 0 is the Disease Free Equilibrium $A = DF(0), \lambda(A) = \max\{Re(\lambda) : \lambda \in Sp(A)\}.$

- $\lambda(A) \leq 0 \Rightarrow \forall (x_0, y_0) \in [0, 1]^2, (x_t, y_t) \to 0$, i.e 0 is Globally Asymptotically Stable
- ② $\lambda(A) > 0 \Rightarrow \exists (x^*, y^*) > 0, \forall (x_0, y_0) > 0, (x_t, y_t) \rightarrow (x^*, y^*), i.e (x^*, y^*) is$ Globally Asymptotically Stabe
- (x^*, y^*) is the Endemic Equilibrium

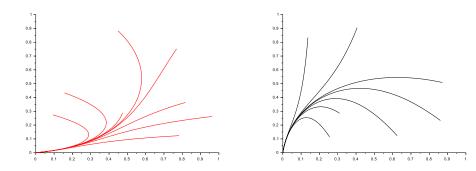


Figure - Examples of environments in which the disease disappears.

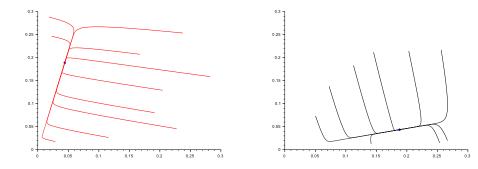


Figure – Examples of environments in which the disease persists in the population.

• an environment $\mathcal{E}_0 := \{a_0, b_0, c_0, d_0, \alpha_0, \beta_0\}$

- an environment $\mathcal{E}_0 := \{a_0, b_0, c_0, d_0, \alpha_0, \beta_0\}$
- an environment $\mathcal{E}_1 := \{a_1, b_1, c_1, d_1, \alpha_1, \beta_1\}$

- an environment $\mathcal{E}_0 := \{a_0, b_0, c_0, d_0, \alpha_0, \beta_0\}$
- an environment $\mathcal{E}_1 := \{a_1, b_1, c_1, d_1, \alpha_1, \beta_1\}$
- a random sequence of times $(T_0^1, T_1^1, T_0^2, T_1^2, \ldots)$

- an environment $\mathcal{E}_0 := \{a_0, b_0, c_0, d_0, \alpha_0, \beta_0\}$
- an environment $\mathcal{E}_1 := \{a_1, b_1, c_1, d_1, \alpha_1, \beta_1\}$
- a random sequence of times $(T_0^1, T_1^1, T_0^2, T_1^2, \ldots)$

Environment is in state 0 during a time T_0^1 ...

- an environment $\mathcal{E}_0 := \{a_0, b_0, c_0, d_0, \alpha_0, \beta_0\}$
- an environment $\mathcal{E}_1 := \{a_1, b_1, c_1, d_1, \alpha_1, \beta_1\}$
- a random sequence of times $(T_0^1, T_1^1, T_0^2, T_1^2, \ldots)$

Environment is in state 0 during a time T_0^1 ... when it switches to state 1 for a time T_1^1 ...

- an environment $\mathcal{E}_0 := \{a_0, b_0, c_0, d_0, \alpha_0, \beta_0\}$
- an environment $\mathcal{E}_1 := \{a_1, b_1, c_1, d_1, \alpha_1, \beta_1\}$
- a random sequence of times $(T_0^1, T_1^1, T_0^2, T_1^2, \ldots)$

Environment is in state 0 during a time T_0^1 ... when it switches to state 1 for a time T_1^1 ... then it goes back to 0 for a time T_0^2 , and so on.

An example

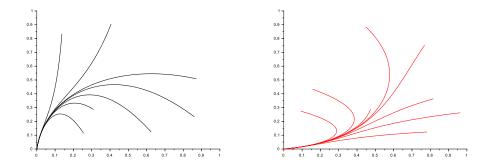
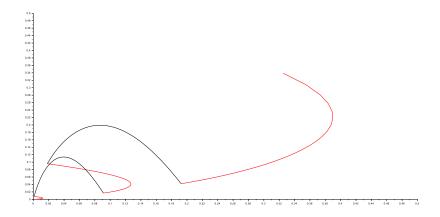


Figure – Environment \mathcal{E}_0 and \mathcal{E}_1 in which the disease eventually disappears

Edouard STRICKLER

If T_0^n and T_1^n are big, i.e. few switches per unit of time...

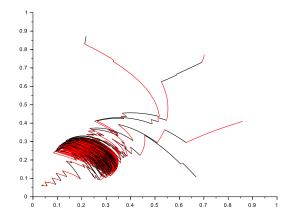


Edouard STRICKLER

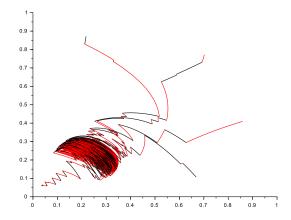
Randomness can reverse the trend

SIAM DS19, Snowbird

... if T_0^n and T_1^n are small, i.e. many switches per unit of time



... if T_0^n and T_1^n are small, i.e. many switches per unit of time



Environmental randomness can reverse the trend : here, it promotes the persistence of the disease in the population.

Edouard STRICKLER

Randomness can reverse the trend

Converse example

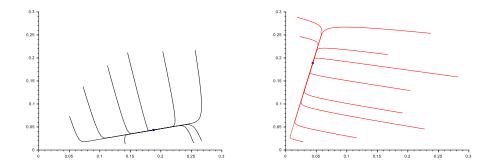
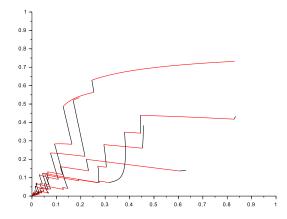


Figure – Environments \mathcal{E}_0 and \mathcal{E}_1 in which the disease persists in the population.

Edouard STRICKLER

if T_0^n and T_1^n are small, i.e. many switches per unit of time



Environmental randomness can reverse the trend : here, it leads to the extinction of the disease.

Edouard STRICKLER

Randomness can reverse the trend

• In general, nothing can be concluded from the deterministic behaviour in each environment

- In general, nothing can be concluded from the deterministic behaviour in each environment
- Is there a way to predict the random behaviour?

 X_t describes the population at time t, I_t is the state of the environment at time t.

 X_t describes the *population* at time t, I_t is the *state of the environment* at time t. 3 ingredients

 X_t describes the *population* at time t, I_t is the *state of the environment* at time t. 3 ingredients

• $\forall i \in E, F^i : \mathbb{R}^d \to \mathbb{R}^d$ smooth vector field : giving the evolution of the population in environment i

 X_t describes the *population* at time t, I_t is the *state of the environment* at time t. 3 ingredients

- $\forall i \in E, F^i : \mathbb{R}^d \to \mathbb{R}^d$ smooth vector field : giving the evolution of the population in environment i
- $\forall i \in E, \alpha_i > 0$ jump rates : describing how long the environment stays in state i

 X_t describes the *population* at time t, I_t is the *state of the environment* at time t. 3 ingredients

- $\forall i \in E, F^i : \mathbb{R}^d \to \mathbb{R}^d$ smooth vector field : giving the evolution of the population in environment i
- $\forall i \in E$, $\alpha_i > 0$ jump rates : describing how long the environment stays in state i
- $\forall i, j, Q(i, j) \in [0, 1]$: giving the probability to switch from environment *i* to environment *j*.

Flow

$$\begin{cases} \frac{d}{dt}x_t = F^i(x_t) \\ x_0 = x \end{cases}$$

has a unique solution : $(\Phi_t^i(x))_{t\geq 0}$

Flow

$$\begin{cases} \frac{d}{dt}x_t = F^i(x_t) \\ x_0 = x \end{cases}$$

has a unique solution : $(\Phi^i_t(x))_{t\geq 0}$

The first jump time

If
$$I_0=i$$
, $\mathbb{P}(\mathcal{T}_1>t)=\exp(-lpha_i t)$: $\mathcal{T}_1\sim\mathcal{E}(lpha_i)$ and $\mathbb{E}(\mathcal{T}_1)=lpha_i^{-1}$.

• $(X_0, I_0) = (x, i) \in \mathbb{R}^d \times E$

The process

- $(X_0, I_0) = (x, i) \in \mathbb{R}^d \times E$
- $\forall t < T_1$, $X_t = \Phi_t^i(x)$ et $I_t = i$

The process

- $(X_0, I_0) = (x, i) \in \mathbb{R}^d \times E$
- $\forall t < T_1$, $X_t = \Phi_t^i(x)$ et $I_t = i$
- At time $T_1: I_{T_1} = j$ with probability Q(i,j) and $X_{T_1} = X_{T_1^-}$,

- $(X_0, I_0) = (x, i) \in \mathbb{R}^d \times E$
- $\forall t < T_1$, $X_t = \Phi_t^i(x)$ et $I_t = i$
- At time $T_1 : I_{T_1} = j$ with probability Q(i,j) and $X_{T_1} = X_{T_1^-}$, *i.e at time* T_1 , *the environment switches from state i to state j with probability* Q(i,j).

The process

- $(X_0, I_0) = (x, i) \in \mathbb{R}^d \times E$
- $\forall t < T_1$, $X_t = \Phi_t^i(x)$ et $I_t = i$
- At time $T_1 : I_{T_1} = j$ with probability Q(i,j) and $X_{T_1} = X_{T_1^-}$, *i.e at time* T_1 , *the environment switches from state i to state j with probability* Q(i,j).
- T₂ defined like T₁

- $(X_0, I_0) = (x, i) \in \mathbb{R}^d \times E$
- $\forall t < T_1$, $X_t = \Phi_t^i(x)$ et $I_t = i$
- At time $T_1 : I_{T_1} = j$ with probability Q(i,j) and $X_{T_1} = X_{T_1^-}$, *i.e at time* T_1 , *the environment switches from state i to state j with probability* Q(i,j).
- T₂ defined like T₁
- $orall T_1 \leq t < T_1 + T_2$, $X_t = \Phi_{t-T_1}^{I_{T_1}}(X_{T_1})$ and $I_t = I_{T_1}$

- $(X_0, I_0) = (x, i) \in \mathbb{R}^d \times E$
- $\forall t < T_1$, $X_t = \Phi_t^i(x)$ et $I_t = i$
- At time $T_1 : I_{T_1} = j$ with probability Q(i,j) and $X_{T_1} = X_{T_1^-}$, *i.e at time* T_1 , the environment switches from state *i* to state *j* with probability Q(i,j).
- T₂ defined like T₁
- $\forall T_1 \leq t < T_1 + T_2$, $X_t = \Phi_{t-T_1}^{\prime \tau_1}(X_{T_1})$ and $I_t = I_{T_1}$
- ... and so on

- $(X_0, I_0) = (x, i) \in \mathbb{R}^d \times E$
- $\forall t < T_1$, $X_t = \Phi_t^i(x)$ et $I_t = i$
- At time $T_1 : I_{T_1} = j$ with probability Q(i,j) and $X_{T_1} = X_{T_1^-}$, *i.e at time* T_1 , *the environment switches from state i to state j with probability* Q(i,j).
- T₂ defined like T₁

•
$$orall T_1 \leq t < T_1 + T_2$$
, $X_t = \Phi_{t-T_1}^{I_{T_1}}(X_{T_1})$ and $I_t = I_{T_1}$

... and so on

In short, $\dot{X}_t = F^{I_t}(X_t)$, with I_t a Markov Chain on E.

Name

The Process Z = (X, I) is called a *Piecewise Deterministic Markov Process* (PDMP).

Name

The Process Z = (X, I) is called a *Piecewise Deterministic Markov Process* (PDMP).

Remark : the Markov property comes from the definition of T_1 :

$$\mathbb{P}(T_1 > t) = \exp(-\alpha_i t).$$

Standing assumption

 $\forall i \in E, F^i(0) = 0$ i.e. 0 is a common equilibrium point.

Standing assumption

 $\forall i \in E$, $F^i(0) = 0$ i.e. 0 is a common equilibrium point.

Consequence :

$$X_0=0 \Leftrightarrow X_t=0.$$

 $M_0 = \{0\} \times E$: extinction set

Standing assumption

 $\forall i \in E$, $F^i(0) = 0$ i.e. 0 is a common equilibrium point.

Consequence :

$$X_0=0 \Leftrightarrow X_t=0.$$

 $M_0 = \{0\} \times E$: extinction set Question : What happens if $X_0 \neq 0$?

Deterministic strategy around an equilibrium

 $\dot{x} = F(x)$ with F(0) = 0.

 $\dot{x} = F(x)$ with F(0) = 0. Linearised system around $0 : \dot{y} = Ay$ with A = DF(0). Then

$$\dot{x} = F(x)$$
 with $F(0) = 0$.
Linearised system around $0 : \dot{y} = Ay$ with $A = DF(0)$. Then
• if $\forall \lambda \in Sp(A), Re(\lambda) < 0$ then $x_t \to 0$ locally exponentially fast;

 $\dot{x} = F(x)$ with F(0) = 0. Linearised system around $0 : \dot{y} = Ay$ with A = DF(0). Then

- if $\forall \lambda \in Sp(A), Re(\lambda) < 0$ then $x_t \to 0$ locally exponentially fast;
- if $\exists \lambda \in Sp(A), Re(\lambda) > 0$ then x_t "goes away from 0 in most cases"

$$\dot{x} = F(x)$$
 with $F(0) = 0$.
Linearised system around $0 : \dot{y} = Ay$ with $A = DF(0)$. Then
• if $\forall \lambda \in Sp(A), Re(\lambda) < 0$ then $x_t \to 0$ locally exponentially fast;

• if $\exists \lambda \in Sp(A), Re(\lambda) > 0$ then x_t "goes away from 0 in most cases" Note : if $\lambda \in Sp(A)$, then $\exists y_0$ such that

$$\lim \frac{1}{t} \log \|y_t\| = Re(\lambda).$$

Going back to our PDMP : $\dot{X}_t = F^{I_t}(X_t)$.

Linearised PDMP

 $\dot{Y}_t = A_{I_t} Y_t$, with $A_i = DF^i(0)$.

Going back to our PDMP : $\dot{X}_t = F^{I_t}(X_t)$.

Linearised PDMP

 $\dot{Y}_t = A_{I_t} Y_t$, with $A_i = DF^i(0)$.

How can we "control" Y?

Going back to our PDMP : $\dot{X}_t = F^{I_t}(X_t)$.

Linearised PDMP

 $\dot{Y}_t = A_{I_t} Y_t$, with $A_i = DF^i(0)$.

How can we "control" Y?

Look at $\lim \frac{1}{t} \log ||Y_t|| \dots$

Theorem

Under general conditions, $\exists \lambda \in \mathbb{R} : \forall (y_0, i)$,

$$\lim_{t o\infty}rac{1}{t}\log\|Y_t\|=\lambda,\quad \mathbb{P}_{y_{m 0},i}- ext{almost surely}.$$

Theorem

Under general conditions, $\exists \lambda \in \mathbb{R} : \forall (y_0, i)$,

$$\lim_{t o \infty} rac{1}{t} \log \|Y_t\| = \lambda, \quad \mathbb{P}_{y_{\mathbf{0}},i} - ext{almost surely}.$$

Main Results : the local behaviour of X near 0 is given by the sign λ .

Theorem (with M. Benaïm)

Assume λ < 0. Then ∀α ∈ (Λ⁺, 0), there exists η > 0 and a neighbourhood U of 0 such that

$$X_0 \in \mathcal{U} \Rightarrow \mathbb{P}(\limsup_{t \to \infty} \frac{1}{t} \log(||X_t||) \le \alpha) \ge \eta.$$

Theorem (with M. Benaïm)

Assume λ < 0. Then ∀α ∈ (Λ⁺, 0), there exists η > 0 and a neighbourhood U of 0 such that

$$X_0 \in \mathcal{U} \Rightarrow \mathbb{P}(\limsup_{t \to \infty} \frac{1}{t} \log(||X_t||) \le \alpha) \ge \eta.$$

3 Assume $\lambda > 0$. Then $\forall \varepsilon > 0$; $\exists r > 0$ such that

$$\limsup \frac{1}{t} \int_0^t 1\!\!1_{\|X_s\| \le r} \mathrm{d}s \le \varepsilon \quad a.s.$$

In other words Z is stochastically persistent

Theorem (with M. Benaïm)

 Assume λ < 0. Then ∀α ∈ (Λ⁺, 0), there exists η > 0 and a neighbourhood U of 0 such that

$$X_0 \in \mathcal{U} \Rightarrow \mathbb{P}(\limsup_{t \to \infty} \frac{1}{t} \log(||X_t||) \le \alpha) \ge \eta.$$

3 Assume $\lambda > 0$. Then $\forall \varepsilon > 0$; $\exists r > 0$ such that

$$\limsup \frac{1}{t} \int_0^t 1\!\!1_{\|X_s\| \le r} \mathrm{d}s \le \varepsilon \quad a.s.$$

In other words Z is stochastically persistent

• Let $\tau^{\varepsilon} = \inf\{t \ge 0 : ||X_t|| \ge \varepsilon\}$. Then there exist $\varepsilon > 0$, and a > 0 such that for all $X_0 \ne 0$,

$$\mathbb{E}(e^{a\tau^{\varepsilon}}) < \infty.$$

• a disease spreads out in a population

- a disease spreads out in a population
- d groups in the population

- a disease spreads out in a population
- *d* groups in the population
- $x_k \in [0,1]$ the proportion of infected in group k

- a disease spreads out in a population
- *d* groups in the population
- $x_k \in [0,1]$ the proportion of infected in group k
- evolution $\dot{x} = F(x)$ with $x = (x_1, \ldots, x_d)$

- a disease spreads out in a population
- *d* groups in the population
- $x_k \in [0,1]$ the proportion of infected in group k
- evolution $\dot{x} = F(x)$ with $x = (x_1, \dots, x_d)$
- Irreducibility : disease can spread from group k to group I

- a disease spreads out in a population
- *d* groups in the population
- $x_k \in [0,1]$ the proportion of infected in group k
- evolution $\dot{x} = F(x)$ with $x = (x_1, \dots, x_d)$
- Irreducibility : disease can spread from group k to group l
- Some monotonicity and sublinearity assumption.

The way the disease spread out depends on an environment that vary randomly

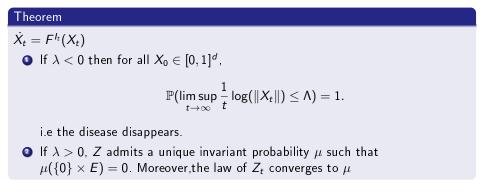
Theorem $\dot{X}_t = F^{I_t}(X_t)$

The way the disease spread out depends on an environment that vary randomly

Theorem

$$\begin{split} \dot{X}_t &= \mathcal{F}^{I_t}(X_t) \\ \bullet \quad \text{If } \lambda < 0 \text{ then for all } X_0 \in [0,1]^d, \\ &\mathbb{P}(\limsup_{t \to \infty} \frac{1}{t} \log(\|X_t\|) \le \Lambda) = 1. \\ &\text{ i.e the disease disappears.} \end{split}$$

The way the disease spread out depends on an environment that vary randomly



 F^0 and F^1 two SIS vector fields in dimension 3 such that, for all $s \in [0,1]$, 0 is globally asymptotically stable for $F_s = sF^1 + (1-s)F^0$. Jump rate : $\alpha_1 = \alpha_2 = \beta > 0$.

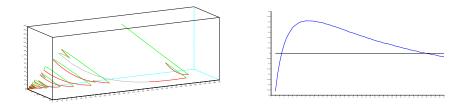


Figure – Simulation of Y_t for $\beta = 10$ and simulation of $\lambda(\beta)$

Edouard STRICKLER

Randomness can reverse the trend

SIAM DS19, Snowbird

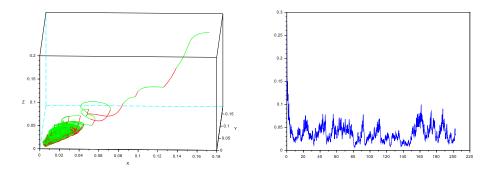


Figure – Simulation of X_t for $\beta = 10$ and simulation of $||X_t||$

Another example : Lotka - Volterra prey-predator

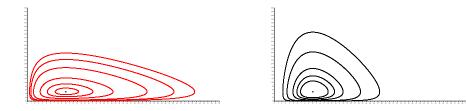


Figure – Periodic orbits around the same point x

$$F^{i}(x,y) = \begin{pmatrix} x(a_{i}-b_{i}y) \\ y(-c_{i}+d_{i}x) \end{pmatrix}, i = 0, 1 \quad p = (\frac{c_{i}}{d_{i}}, \frac{a_{i}}{b_{i}}).$$

Theorem (with Alex Hening)

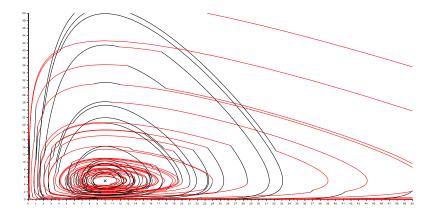
If F^0 and F^1 are not proportional;

 $\lambda > 0$,

and

 $\limsup x_t = \limsup y_t = +\infty, \quad \liminf x_t = \liminf y_t = 0 \quad p.s.$

Environmental Randomness



Edouard STRICKLER

Randomness can reverse the trend

SIAM DS19, Snowbird

Thank you!

Edouard STRICKLER

Randomness can reverse the trend

SIAM DS19, Snowbird