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A �rst example : An Epidemiological model

a disease spreads out in a population

2 groups in the population

xt ∈ [0, 1] (resp. yt) the proportion of infected people in group 1 (resp. 2) at
time t ≥ 0.

evolution
dxt
dt = (1− xt)(axt + byt)− αxt
dyt
dt = (1− yt)(cxt + dyt)− βyt

with some initial condition x0 = x , y0 = y .

The Environment corresponds to the coe�cients a, b, c , d , α, β > 0.
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Deterministic dichotomy

Theorem (Lajmanovic-Yorke)

Write

F (x , y) =

{
(1− x)(ax + by)− αx
(1− y)(cx + dy)− βy

Note that F (0) = 0 : 0 is the Disease Free Equilibrium

A = DF (0), λ(A) = max{Re(λ) : λ ∈ Sp(A)}.
1 λ(A) ≤ 0⇒ ∀(x0, y0) ∈ [0, 1]2, (xt , yt)→ 0, i.e 0 is Globally Asymptotically

Stable

2 λ(A) > 0⇒ ∃(x∗, y∗) > 0,∀(x0, y0) > 0, (xt , yt)→ (x∗, y∗), i.e (x∗, y∗) is

Globally Asymptotically Stabe

(x∗, y∗) is the Endemic Equilibrium
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Figure � Examples of environments in which the disease disappears.
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Figure � Examples of environments in which the disease persists in the population.

Edouard STRICKLER Randomness can reverse the trend SIAM DS19, Snowbird



Environmental randomness

What happens if the environment �uctuates randomly between, say, two states ?

Framework :

an environment E0 := {a0, b0, c0, d0, α0, β0}
an environment E1 := {a1, b1, c1, d1, α1, β1}
a random sequence of times (T 1

0 ,T
1
1 ,T

2
0 ,T

2
1 , . . .)

Environment is in state 0 during a time T 1
0 ...

when it switches to state 1 for a time T 1
1 ...

then it goes back to 0 for a time T 2
0 , and so on.
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An example

Figure � Environment E0 and E1 in which the disease eventually disappears
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If T n
0 and T n

1 are big, i.e. few switches per unit of time...
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...if T n
0 and T n

1 are small, i.e. many switches per unit of time

Environmental randomness can reverse the trend : here, it promotes the
persistence of the disease in the population.
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...if T n
0 and T n

1 are small, i.e. many switches per unit of time

Environmental randomness can reverse the trend : here, it promotes the
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Converse example

Figure � Environments E0 and E1 in which the disease persists in the population.
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if T n
0 and T n

1 are small, i.e. many switches per unit of time

Environmental randomness can reverse the trend : here, it leads to the
extinction of the disease.
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In general, nothing can be concluded from the deterministic behaviour in
each environment

Is there a way to predict the random behaviour ?
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Switched vector �elds

Process (Zt)t≥0 = (Xt , It)t≥0 on Rd × E , with E the �nitely many possible states
of the environment

Xt describes the population at time t, It is the state of the environment at time t.
3 ingredients

∀i ∈ E , F i : Rd → Rd smooth vector �eld : giving the evolution of the

population in environment i

∀i ∈ E , αi > 0 jump rates : describing how long the environment stays in

state i

∀i , j , Q(i , j) ∈ [0, 1] : giving the probability to switch from environment i to
environment j .
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Construction

Flow {
d
dt xt = F i (xt)

x0 = x

has a unique solution : (Φi
t(x))t≥0

The �rst jump time

If I0 = i , P(T1 > t) = exp(−αi t) : T1 ∼ E(αi ) and E(T1) = α−1i .
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The process

(X0, I0) = (x , i) ∈ Rd × E

∀t < T1, Xt = Φi
t(x) et It = i

At time T1 : IT1 = j with probability Q(i , j) and XT1 = XT−
1
, i.e at time T1,

the environment switches from state i to state j with probability Q(i , j).

T2 de�ned like T1

∀T1 ≤ t < T1 + T2, Xt = Φ
IT1
t−T1(XT1) and It = IT1

... and so on

In short, Ẋt = F It (Xt), with It a Markov Chain on E .
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PDMP

Name

The Process Z = (X , I ) is called a Piecewise Deterministic Markov Process

(PDMP).

Remark : the Markov property comes from the de�nition of T1 :

P(T1 > t) = exp(−αi t).
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Standing assumption

∀i ∈ E , F i (0) = 0 i.e. 0 is a common equilibrium point.

Consequence :
X0 = 0⇔ Xt = 0.

M0 = {0} × E : extinction set
Question : What happens if X0 6= 0 ?

Edouard STRICKLER Randomness can reverse the trend SIAM DS19, Snowbird



Standing assumption

∀i ∈ E , F i (0) = 0 i.e. 0 is a common equilibrium point.

Consequence :
X0 = 0⇔ Xt = 0.

M0 = {0} × E : extinction set

Question : What happens if X0 6= 0 ?

Edouard STRICKLER Randomness can reverse the trend SIAM DS19, Snowbird



Standing assumption

∀i ∈ E , F i (0) = 0 i.e. 0 is a common equilibrium point.

Consequence :
X0 = 0⇔ Xt = 0.

M0 = {0} × E : extinction set
Question : What happens if X0 6= 0 ?

Edouard STRICKLER Randomness can reverse the trend SIAM DS19, Snowbird



Deterministic strategy around an equilibrium

ẋ = F (x) with F (0) = 0.

Linearised system around 0 : ẏ = Ay with A = DF (0). Then

if ∀λ ∈ Sp(A),Re(λ) < 0 then xt → 0 locally exponentially fast ;

if ∃λ ∈ Sp(A),Re(λ) > 0 then xt "goes away from 0 in most cases"

Note : if λ ∈ Sp(A), then ∃y0 such that

lim
1

t
log ‖yt‖ = Re(λ).
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Going back to our PDMP : Ẋt = F It (Xt).

Linearised PDMP

Ẏt = AItYt , with Ai = DF i (0).

How can we "control" Y ?

Look at lim 1

t log ‖Yt‖...
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Theorem

Under general conditions, ∃λ ∈ R : ∀(y0, i),

lim
t→∞

1

t
log ‖Yt‖ = λ, Py0,i − almost surely.

Main Results : the local behaviour of X near 0 is given by the sign λ.

Edouard STRICKLER Randomness can reverse the trend SIAM DS19, Snowbird



Theorem

Under general conditions, ∃λ ∈ R : ∀(y0, i),

lim
t→∞

1

t
log ‖Yt‖ = λ, Py0,i − almost surely.

Main Results : the local behaviour of X near 0 is given by the sign λ.

Edouard STRICKLER Randomness can reverse the trend SIAM DS19, Snowbird



Theorem (with M. Benaïm)

1 Assume λ < 0. Then ∀α ∈ (Λ+, 0), there exists η > 0 and a neighbourhood
U of 0 such that

X0 ∈ U ⇒ P(lim sup
t→∞

1

t
log(‖Xt‖) ≤ α) ≥ η.

2 Assume λ > 0. Then ∀ε > 0 ; ∃r > 0 such that

lim sup
1

t

∫ t

0

1l‖Xs‖≤rds ≤ ε a.s.

In other words Z is stochastically persistent

3 Let τε = inf{t ≥ 0 : ‖Xt‖ ≥ ε}. Then there exist ε > 0, and a > 0 such that
for all X0 6= 0,

E(eaτ
ε

) <∞.
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Epidemiological models

a disease spreads out in a population

d groups in the population

xk ∈ [0, 1] the proportion of infected in group k

evolution ẋ = F (x) with x = (x1, . . . , xd)

Irreducibility : disease can spread from group k to group l

Some monotonicity and sublinearity assumption.

Edouard STRICKLER Randomness can reverse the trend SIAM DS19, Snowbird



Epidemiological models

a disease spreads out in a population

d groups in the population

xk ∈ [0, 1] the proportion of infected in group k
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Random dichotomy

The way the disease spread out depends on an environment that vary randomly

Theorem

Ẋt = F It (Xt)

1 If λ < 0 then for all X0 ∈ [0, 1]d ,

P(lim sup
t→∞

1

t
log(‖Xt‖) ≤ Λ) = 1.

i.e the disease disappears.

2 If λ > 0, Z admits a unique invariant probability µ such that
µ({0} × E ) = 0. Moreover,the law of Zt converges to µ
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Example in dimension 3

F 0 and F 1 two SIS vector �elds in dimension 3 such that, for all s ∈ [0, 1], 0 is
globally asymptotically stable for Fs = sF 1 + (1− s)F 0. Jump rate :
α1 = α2 = β > 0.
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Figure � Simulation of Yt for β = 10 and simulation of λ(β)
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Figure � Simulation of Xt for β = 10 and simulation of ‖Xt‖
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Another example : Lotka - Volterra prey-predator

Figure � Periodic orbits around the same point x

F i (x , y) =

(
x(ai − biy)
y(−ci + dix)

)
, i = 0, 1 p = (

ci
di
,
ai
bi

).
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Theorem (with Alex Hening)

If F 0 and F 1 are not proportional ;

λ > 0,

and
lim sup xt = lim sup yt = +∞, lim inf xt = lim inf yt = 0 p.s.
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Environmental Randomness
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Thank you !
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