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The competitive exclusion principle

Competitive exclusion principle

One of the fundamental principles from ecology, the competitive ex-
clusion principle (Gause ’32, Volterra ’28, Hardin ’60), says that when
multiple species compete with each other for the same resource, one
competitor will win and drive all the others to extinction.

In contrast to this principle, it has been observed in nature that multiple
species can coexist despite limited resources.
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The competitive exclusion principle

Figure 1: Phytoplankton.
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The competitive exclusion principle

Competitive exclusion principle

Phytoplankton species can coexist even though they all compete for a small
number of resources. This apparent violation of the competitive exclusion
principle has been called by Hutchinson ‘the paradox of the plankton’.

Hutchinson gave a possible explanation by arguing that variations of the
environment can keep species away from the deterministic equilibria that
are forecasted by the competitive exclusion principle.
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The competitive exclusion principle

A deterministic model for competing species
Two species X1 and X2 competing for one resource R.

dX1(t)
dt

= X1(t)(−α1 + b1R(X1(t), X2(t))

dX2(t)
dt

= X2(t)(−α2 + b2R(X1(t), X2(t))

where α1, α2 > 0 are the death rates and b1, b2 measure the number of
offspring per unit of resource.

Alexandru Hening | Tufts University 6/32



The competitive exclusion principle

A deterministic model for competing species

A natural assumption is that the abiotic resource depends linearly on the
density of the species, so that

R(x1, x2) = R− a1x1 − a2x2
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The competitive exclusion principle

The dynamics is then given by

dX1(t)
dt

= X1(t)
(
−α1 + b1

[
R− a1X1(t)− a2X2(t)

])
dX2(t)
dt

= X2(t)
(
−α2 + b2

[
R− a1X1(t)− a2X2(t)

])

It can be shown that the competitive exclusion principle holds in this
setting, i.e. the two species X1 and X2 cannot coexist.
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The competitive exclusion principle

A stochastic model for competing species
Suppose the dynamics switches randomly between two different environ-
ments. In environment u ∈ {1, 2} we follow a system of ODE of the
form

dX1(t)
dt

= X1(t)
(
−α1(u) + b1(u)

[
R− a1(u)X1(t)− a2(u)X2(t)

])
dX2(t)
dt

= X2(t)
(
−α2(u) + b2(u)

[
R− a1(u)X1(t)− a2(u)X2(t)

])
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The competitive exclusion principle

Competitive exclusion principle

We spend a random exponential time T1 ∼ Exp(λ1) in environment 1,
after which we switch to environment 2, spend a random exponential time
T2 ∼ Exp(λ1) there and switch to environment 1. Repeat this procedure
indefinitely.

What happens with the system as t→∞?
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The competitive exclusion principle

Competitive exclusion principle

Let us assume that in both environments species X1 is dominant and
drives species X2 extinct.
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The competitive exclusion principle

Competitive exclusion principle

By suitably choosing the rates of the exponential switching times T1 and
T2 we can show that one can get coexistence.

By spending time in both environments there can be a rescue effect
which forces both species to persist.
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The competitive exclusion principle

(Benaim and Lobry AAP ’17, H. and Nguyen ’18). In the random
model we can get the following regimes

• Persistence of X1 and extinction of X2.

• Coexistence: Both X1 and X2 persist.

• Reversal: Extinction of X1 and persistence of X2.

• Bistability: For initial density (x0
1, x

0
2) persistence of x1 and

extinction of x2 with probability p(x0
1,x

0
2) or persistence of x2

and extinction of x1 with probability 1− p(x0
1,x

0
2).
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The competitive exclusion principle

Piecewise deterministic Markov processes

For a PDMP, the process follows a deterministic system of differential
equations for a random time, after which the environment changes, and
the process switches to a different set of ordinary differential equations
(ODE), follows the dynamics given by this ODE for a random time and
then the procedure gets repeated.
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The competitive exclusion principle

Piecewise deterministic Markov processes

Suppose (r(t)) is a process taking values in the finite state space N =
{1, . . . , N}. This process keeps track of the environment, so if r(t) = i ∈ N
this means that at time t the dynamics takes place in environment i. Once
one knows in which environment the system is, the dynamics are given by
a system of ODE. We can write

dXi(t)
dt

= Xi(t)fi(X(t), r(t)), i = 1, . . . , n.
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The competitive exclusion principle

Piecewise deterministic Markov processes

Suppose that the switching intensity of r(t) depends on the state of X(t)
as follows

P{r(t+ ∆) = j | r(t) = i,X(s), r(s), s ≤ t} = qij(X(t))∆ + o(∆).

Simplest case: qij(X(t)) = qij are constants. Then r(t) is an independent
Markov chain and the time r(t) spends in any given state is an independent
exponential.
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The competitive exclusion principle

Piecewise deterministic Markov processes

Call µ an invariant probability measure for the process (X(t), r(t)) if
whenever one starts the process with initial conditions distributed according
to µ(·, ·), then for any time t ≥ 0 the distribution of (X(t), r(t)) is given
by µ(·, ·).
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The competitive exclusion principle

Piecewise deterministic Markov processes

M is the set of ergodic invariant measures of (X(t), r(t)) with support
on the boundary ∂Rn+ ×N .

ConvM is the set of invariant measures of (X(t), r(t)) with support on
the boundary ∂Rn+ ×N .
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The competitive exclusion principle

Piecewise deterministic Markov processes

If µ ∈ M is an ergodic measure and X spends a lot of time close to its
support, supp (µ), then it will get attracted or repelled in the ith direction
according to the Lyapunov exponent

λi(µ) =
∑
k∈N

∫
∂Rn

+

fi(x, k)µ(dx, k).
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The competitive exclusion principle

We call an invariant probability measure µ ∈ Conv(M) a repeller
if

max
i=1,...,n

λi(µ) > 0.

An ergodic probability measure µ ∈ M is called a transversal
attractor if

λi(µ) < 0

for all directions i which are not supported by the measure.
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The competitive exclusion principle

Coexistence

Theorem
(Benaim ’18, H. and Nguyen ’19) If all µ ∈ Conv(M) are repellers,
then all species persist.
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The competitive exclusion principle

Theorem
For each transversal attractor µ ∈M which is accessible we have

Pµx,k := Px,k

{
(X, r)→ µ, lim

t→∞

lnXi(t)
t

= λi(µ) < 0, i ∈ Icµ
}
> 0.

Furthermore, the process will converge almost surely to one of the
transversal attractors. ∑

µ attractor
Pµx,k = 1.
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The competitive exclusion principle

Examples
Two species X1 and X2 competing for resources.

dX1(t)
dt

= X1(t)[a(r(t))− b(r(t))X2(t)− e(r(t))X1(t)],

dX2(t)
dt

= X2(t)[c(r(t))− d(r(t))X1(t)− f(r(t))X2(t)]

where r(t) is an independent irreducible Markov chain which switches
between two environments {1, 2} and has a stationary distribution (ν1, ν2).
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The competitive exclusion principle

Examples

δ∗
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The competitive exclusion principle

Examples

First, we check whether each species can survive on its own, that is we
compute the Lyapunov exponents of the measure δ∗ := δ × ν where δ is
the Dirac measure at (0, 0). Then

λ1(δ∗) = ν1a(1) + ν2a(2)

and
λ2(δ∗) = ν1c(1) + ν2c(2).
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The competitive exclusion principle

Examples

λ1(δ∗) > 0, λ2(δ∗) > 0

Alexandru Hening | Tufts University 26/32



The competitive exclusion principle

Examples

µ1

µ2

δ∗
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The competitive exclusion principle

Examples

One can explicitly compute the Lyapunov exponents λ1(µ2) and λ2(µ1).
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The competitive exclusion principle

Examples

µ1

µ2

δ∗
λ2(µ1) > 0

λ1(µ2) > 0
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The competitive exclusion principle

Examples

µ1

µ2 µ12

δ∗
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The competitive exclusion principle

• If λ1(µ2) > 0 and λ2(µ1) < 0 persistence of X1 and extinc-
tion of X2.

• Coexistence: If λ1(µ2) > 0 and λ2(µ1) > 0 then both X1
and X2 persist.

• Reversal: If λ1(µ2) < 0 and λ2(µ1) > 0 extinction of X1 and
persistence of X2.

• Bistability: If λ1(µ2) < 0 and λ2(µ1) < 0.
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Thank you for your attention!


