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Intro

© Introduction



“Exposition of a new theory on the measurement of
risk”, Commentarii Academiae Scientiarum Imperi-
alis Petropolitanae, 5:175-192, 1738

Peter tosses a coin and continues to do so until it
should land “heads” when it comes to the ground.
He agrees to give Paul one ducat if he gets "heads”
on the very first throw, two ducats if he gets it on the
second, four if on the third, eight if on the fourth,
and so on, so that with each additional throw the
number of ducats he must pay is doubled. ... The
accepted method of calculation does, indeed, value
Paul’s prospects at infinity though no one would be
willing to purchase it at a moderately high price.

Daniel Bernoulli and the “St Petersburg paradox”

THEORIAE NOVAE
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Meander: first experimental evidence

A.T.Winfree "Scroll-Shaped Waves
of Chemical Activity in Three Dimen-
sions”, Science 181:937-939, 1973

in press). Realization of a stationary scroll
axis may require better-controlled experi-
mental conditions than I have yet contrived.
The disintegration of elongated \o-spiral
sources and Mo-ring sources into shorter seg-
ments of the same total parity shows that the
scroll axis slowly drifts or writhes about.
Even when nearly perpendicular to both inter-
faces, in thin liquid layers or in a Millipore,
it may move about: microscopic observation
shows that the interior tip of the involute spiral
wave does not propagate quite in circles
around a stationary center, but rather
meanders in loops of length of the order of
o throughout a core region of diameter about
Mo/w. Thus, no volume element escapes ex-
citation to blue from the orange quiescent
state within the span of a few rotations. I do
not know whether this symmetry-breaking in-
stability of the scroll axis is due to the inter-
action of reaction and diffusion, or to local
inhomogeneities of temperature, Millipore
density, and so forth.



Meander: numerical simulations

Fig. 6. Meandering of subsequent positions of point q (as &= 91 2 03 ¢

defined in Fig. 5), from time t = 5.15 to time t = 6.4.

Solid line: time step size A¢ = 0.025; dashed line (starting Fia. 3. Trajectory of movement of tip of helical wave obtained in computational experiments for
at t =54): At = 0.05. Axes: 0.46...0.64 (horizontal) . differeat values of the coefficients & and k,.

and 0.32 ... 0.5 (vertical).

O.E. Réssler and C. Kahlert | V.S. Zykov “Cycloid circulation of spiral
“Winfree Meandering in a | waves in an excitable medium”, Biofizika
2-Dimensional 2-Variable Ex- | 31(5):862-865, 1986

citable Medium”, Z. Natur-
forsch. 34a:565-570, 1979
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Hypermeander: “Complex rotation” in simulations

FitzHugh-Nagumo Oregonator
16 1/€
10 20 50 100 200 500 1000
0.30 0.20 0.10 005 0.08 ) : ' s L L )

A.T. Winfree “Varieties of spiral wave behaviour: An experimentalist’s
approach to the theory of excitable media”, Chaos 1(3):303-334, 1991



Intro
oe

(show the movies?)



Spiral tip trajectories in two variants of the model of
guinea pig ventricular tissue

“Zykov" meander in a model with  Hypermeander: parameter
standard parameters (Biktashev changed to represent Long
and Holden, 1996) QT syndrome (Biktashev and

Holden, 1998)
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Transition to meander as a Hopf bifurcation

D. Barkley, M. Kness and L.S. Tuck-
erman “Spiral-wave dynamics in a
simple model of excitable media: The
transition from simple to compound
rotation”, Phys. Rev. A 42(4):2489-

2492, Aug 1990 085050 ot s 0a8°
a

independently: A. Karma “Meander- | °f llope=049:002 -
ing Transition in Two-Dimensional {Z —04f .
Excitable Media”, Phys. Rev. Lett. ‘:’% ok E
65(22):2824-2827, Nov. 1990 2 [ ()
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Barkley's “normal form”

D. Barkley “Euclidean Symmetry
and the Dynamics of Rotating Spi-

ral Waves" Phys. Rev. Lett.
72(1):164-167
a
0.2 0.4 0.6 0.8 1
7 mm

Letting p = z + iy and v = se*®, with “speed” s > 0,
Egs. (2) become

& = scosg@,

§=ssing, ¢=uw-h(s2w?),
W = w - g(s?, w?). (3)

We consider the following expansions for f, g, and h:

=5 f(s%,w?),

(s w)—-ao+als -+-agw — st
9(s%,w?) = "1+ﬁ15 -w? (4)
h(s*, W)

FIG. 3. Phase diagram for the model equations. Numeri-
cally obtained plots of p = z + iy over short time intervals are
shown centered on corresponding parameter points. The inset
shows the three lowest-order resonant bifurcations. Dashed
curves show loci of MTW states.



© Symmetry reduction



Reduction
o

System “reaction-diffusion”

ou

5= DV?u + f(u),
where
u= ( u(")>—r =u(r,t) e R" (concentrations);
f="Ff(u ) (reaction rates);
D e R™ (matrix of diffusion coeffs);
n>2, (number of components);
F=(x,y) € R? (physical space).

This system is equivariant with respect to Euclidean transformations of
the spatial coordinates 7.
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Reduction
o

Reaction-diffusion system as an ODE in functional space

Ou 2
T DV<u + f(u)

in a suitable functional space B can be written as

duU
—_— = F

where

U.R—>B represents u,
F:5->58 represents DV2u + f.

14 /65



Reduction
L]

An equivariant ODE

Let us suppose that

du

= —F

i —F)

is equivariant with respect to a representation T of a Lie group G in B:
VgeG, VYUeB:F(T(g)U)=T(g)F(U).

For the reaction-diffusion system, this is the special Euclidean group
acting via transformations of r

G = SE(2), G>g:R?— R?
T(g)u(A) =u(g™ '), T(g):B— B.

15 /65



Reduction

Decomposition of a trajectory: geometrically

Skew-product decomposition of an
equivariant flow using a Representa-
tive Manifold M (RM), which has
exactly one transversal intersection
with every group orbit g € G (GO)
and is diffeomorphic to the orbit
manifold. Trajectory (U, U’,;U"”) of
an equivariant flow in B is a relative
periodic orbit: it projects onto the
trajectory (V,V’,V” = V) on M
which is periodic. The flow on M
is devoid of symmetry G.

group extension
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Reduction
L]

Decomposition of a trajectory: analytically

So for all t > 0, we have

where
(RM) ((11—\1_/ =Fm(V) base
T
(GO) T(g™") d7(e) V =Fg(V) extension
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Reduction
o

Result: skew-product description

Base: reaction-diffusion in the tip frame of reference

Ov 9,
pr = DV?v +f(v) + (¢- V)v + wa—;, reaction+diffusion+advection
vi(0, t) = u,, vP)(0, 1)

= v,, tip position
av(B)(0, t) L
—— = =0, tip orientation

Ox

Extension: tip equations of motion

de dR
g P
ak o ¢ C

Dynamic variables: v(7, t) e(
(NB: can identify R2 —
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Classification

© Symmetry classification of spiral waves
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Classification

The four types of spiral waves

Base dynamics ‘ Group extension
Fixed point Rigid rotation
Limit cycle Zykov's “cycloidal”
Quasiperiodic Hypermeander ?
Chaotic Hypermeander 7

@ Hopf normal point in base system < “Barkley normal form" (up to
change of variables)

@ Chaotic base dynamics = deterministic Brownian motion of tip
(Biktashev & Holden 1998)

@ Quasiperiodic base dynamics = tip trajectories almost certainly
bounded (Nicol, Melbourne & Ashwin 2001)
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Classification

The four types of spiral waves

Base (generic)

Extension (me-
ander pattern)

Base (generic)

Extension (me-
ander pattern)

Point Attractor
(Equilibrinm)

“Pinwheel”

Limit Cycle
(Peviodic Belavior)

"Zykov cycloid”

Limit Torus
(Quasi-Periodic Behavier)

-
o

Strange Attractor
{(Chaotic Behavior)
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Classification
o

Drift of “pinwheel” spirals

o Well studied

@ Spiral is characterised by the instant centre position and the fiducial

phase

@ ...all of which change with the rate proportional to the perturbation
@ ...with the proportionality coefficients defined by the corresponding

“response functions”

PHYSICAL REVIEW E 81, 066202 (2010)

Computation of the drift velocity of spiral waves using response functions

1. V. Biktasheva
Department of Computer Science, University of Liverpool, Ashton Building, Ashton Street, Liverpool L69 3BX, United Kingdom

D. Barkley
Mathematics Institute, University of Warwick, Coventry CV4 7AL, United Kingdom

V. N. Biktashev
Department of Mathematical Sciences, University of Liverpool, Mathematical Sciences Building, Peach Street,
Liverpool L69 7ZL, United Kingdom

A. J. Foulkes
Department of Computer Science, University of Liverpool, Ashton Building, Ashton Street, Liverpool L69 3BX, United Kingdom
(Received 21 January 2010; published 1 June 2010)
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Classification
L]

Drift of classically (“Zykov") meandering spirals

(b)o| @

@ Theory is nascent
@ Spiral is characterized by the instant

centre position, the fiducial rotation
phase and fiducial meandering phase

non-ocked
meander

@ Hence, possibility of locking between
the phases

FIG. 4, Phase-locking in Barkley’s model. (a) Drift trajectories
with E = E¢, for parameters as in Fig. 1(a), showing phase-
locking when E > 0.04. (b) Amold tongue confirming the
theoretical prediction in Eq. (22). (c) Occurrence of phase-
locking for £ = 0.03 in (a),(b) parameter space with ¢ = 0.02.
(d) Drift components parallel and perpendicular to E, for
b = 0.05. The colored background indicates meander.

week ending

PRL 119, 258101 (2017) PHYSICAL REVIEW LETTERS 22 DECEMBER 2017

Filament Tension and Phase Locking of Meandering Scroll Waves

Hans D.ie:rv.:kx,1 LV. Biktasheva,z‘3 H. Ve:rsc:helde,l A. V. Panﬁlov,l and V. N. Biktashev®



Classification
o

Drift of hypermeandering spirals of either kind?

@ Not considered so far, to our knowledge

@ Even characterization of the unperturbed dynamics is interesting.
E.g. how does one tell one from the other?

@ Insights can be gained by assuming base dynamics and then solving
the simple ODE for the tip motion

Chaotic Quasiperiodic

AH, —_—

o
o Nonlinearity 14 (2001) 275300 www.iop.orgllournalsino _PII: S0951-7715(01)13756.4
b

ELSEVIER Physica D 116.(1998) 342-354

Euclidean extensions of dynamical systems

Deterministic Brownian motion in the hypermeander of spiral waves
Matthew Nicol', Tan Melbourne? and Peter Ashwin®

'V.N. Biktashev “"*, A.V. Holden "
—— o en, for almost everya € B,

1 5 A and for almost every sufficiently smooth SE(2)-extension (h. k) : T" — SE(2) = SO(2) x B?,

100 / the dynamics on T" x SE(2) is bounded.
A~ Plane English: tip trajectories of

Theorem 7.4. Consider the irrational torus flow 0 = aonT".

o o ‘ 2 € Ehell
ey } <(AX) >o<t quasiperiodic hypermeander are al-
Lo most certainly bounded.
"L | How big they can be?
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Extension

@ Noncompact extensions of quasiperiodic dynamics

25 /65



Extension
o

Size matters

“Zykov" meander in a model with  Hypermeander: parameter
standard parameters (Biktashev changed to represent Long
and Holden, 1996) QT syndrome (Biktashev and

Holden, 1998)
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Extension
(]

The Rl-extension of quasiperiodic dynamics

Base

dg i(n-p
E:s(w): Zs,,e( ),

nezZk

w _,

dt 7’
wherewe']I‘k, veRK k>2.

Extension
Termwise integration gives
a(t) = a(0) + sot
1 —Js .
n i(nv)t 1) )
+ Z (n-v) (e

neZK\{0}

For incommensurate v, we have small denominator problem.

Nicol et al: for almost all v, the sum converges.

Hence the size is an everywhere discontinuos of v.

°
o
@ However, it diverges for an everywhere dense set of v.
°
°

Physically, have to treat it as a random quantity.



Extension
o

The SE(2)-extension: size of hypermeandering trajectory

Base Extension
dp ;
at = v(0) e'?, o Rl-extension for ©, then
o Rl-extension for p, leading to
de _ w(6) °
dt ’
(2 2
L— 8@ = [p(t) — p(O)
dt ,
_ Z/ —ivf (ei(n‘&z)t _ 1)
neZm+1 (n ’ w)




Extension
L]

Results

Let 02(@0) =t [ |Ap (@) — pe(@)* dt’, where
pue(@) =ttt fot Ay (@) dt’. Then for continuously distributed &,

°
E[Al] = Git,
°
E[O’?] ~ Czt, Cl/C2:6,
°
F(x) =Plow > x] cx x71, as  x — 400,
°

E[o] = +o0.



Numerics

© Numerical illustration



Numerics
e0

The model and its caricature (1/2)

FitzHugh-Nagumo with hypermeandering spirals:

ue = 20(u — u®/3 — v) + V2u,
ve = 0.05(u+ 1.2 — 0.5v).

The trajectory of the tip is emulated by

dp _ io dﬁ _ die _ m
T v(0) e'?, ar - w(6), G wE R
m=2 v(f)=(06—-028—-02a8)"—1,

w(0) = (0.675 + 0.1 + 0.058 + 0.50° + 0.50,3

+0.20° +0.6028) ' — 1,
a = costy + 0.05tanh(30cos ), [ =sinby,
w1 =0.354, w, € [0475,0525]
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The model and its caricature

~L

Spiral wave and a
piece of meander
tip  trajectory in
FitzZHugh-Nagumo
model

Numerics
oe

7=3x10*
3

7=10

7=30

L

Longer pieces of the
same tip trajectory

(2/2)

7=3x10*
7=10°
—— 7=30

8

Pieces of trajectory of
different lengths gen-
erated by the carica-
ture model
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Numerics
o

Sizes of trajectories of different length, as functions of w,

3 T

7=10"
4 [T=10° ——
=100 ——

100 I ! ! !
0.48 0.49 0.5 0.51 0.52
;

Continuous functions converging to an everywhere discontinuous limit.
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Numerics
(]

Distributions of trajectory sizes

10° | 10} - —
i 7=10* — - -
10" F =100 —— 1
T=10° - - - -
102 F T=10" i
R Cx'] """
10° ¢ \ .
104 E ‘:I‘— N
-5 . Hm:\ L HHH\ ‘
10
10° 10* 10°
X

Distribution functions F(x) =P [o7(&) > x], for the estimates of o1
made for different time intervals T in the caricature model. The straight
line is the theoretical asymptotic.
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Numerics
o

Mean square of trajectory size as function of the time
interval

102 10® 10* 105 105 107
Mean square of trajectory size as function of the time interval (log-log

plot, two different statistics). The straight lines corresponding to the
theoretical predictions.
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Concusion

© Conclusion
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Concusion
@O0

Conclusions

@ Deterministic equations, no chaos involved, but the question allows
only probabilistic treatment.

@ Trajectory size finite with probability one, but infinite expectation.

@ Size of long pieces depends on parameters in an irregular way,
everywhere discontinuous in the limit.

@ Similar to St Petersburg paradox: infinite expectation, but need
infinite time to achieve

e Asymptotic of size «c T%/2 is similar to deterministic Brownian
motion of chaotic hypermeander, but in a different sense

@ Perturbation theory: still long way away. Here is one small step
towards realising how difficult it is even to pose the problem!

@ Applicattion: cardiac arrhythmias. Possible: different physics
(quasicrystals???)
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Concusion
(o] J

THE END



Appl

@ Appendix 1: Derivation of the tip motion equations
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System “reaction-diffusion”

% = DV?u + f(u),
where
u= ( u(")>—r =u(r,t) e R" (concentrations);
f="Ff(u ) (reaction rates);
D e R™ (matrix of diffusion coeffs);
n>2, (number of components);
F=(x,y) € R? (physical space).

This system is equivariant with respect to Euclidean transformations of
the spatial coordinates 7.
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Two popular examples

FitzHugh-Nagumo

ou 1 u? 9
8t€(u—3—v>+v u,

ov

EZG(U—’—ﬁ_’yV)?

with parameters ¢, 3, v. Second
field can also be diffusive; “car-
diac” models only have one diffu-
sive component.

Barkley

b
Z—iu(l—u)(u—v—’_ >+V2 ,
@—u—v
ot ’

with parameters a, b, €. This is a vari-
ation of FHN that is easy to calculate
fast, especially if accuracy requirements
can be relaxed.

41



Reaction-diffusion system as an ODE in functional space

in a suitable functional space B can be written as

duU
— =F

where

U.R—>B represents u,
F:5->58 represents DV2u + f.



An equivariant ODE

Let us suppose that

du

= —F

i —F)

is equivariant with respect to a representation T of a Lie group G in B:
VgeG, VYUeB:F(T(g)U)=T(g)F(U).

For the reaction-diffusion system, this is the special Euclidean group
acting via transformations of r

G = SE(2), G>g:R?— R?
T(g)u(A) =u(g™ '), T(g):B— B.
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Assumption of free action

o Consider a flow-invariant set By C B such that G acts freely on on
Bo, ie.

YUeBy: T(g)lU=U = g=id

(Bp is the “principal stratum” of B, corresponding to the trivial
isotropy subgroups).

e For RDS: the graph of any function u(7) that may be considered as
a snapshot of a valid spiral wave solution, is devoid of any rotational
or translational symmetry.
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Group orbits foliate the phase space

A group orbit of a given U is the set T(G)U ={T(g)U|g € G}.

@ That is, it is a set of all such functions u(7) that can be obtained
from one another by applying an appropriate Euclidean
transformation to 7"

@ A group orbit is a manifold in By, of a dimensionality equal to
d = dim G less the dimensionality of the isotropy group. In our case,
dim SE(2) = 3, the isotropy group is trivial and the orbits are
smooth three-dimensional manifolds.

@ [y is invariant = is a disjoint union of group orbits ( “is foliated”).
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Assumption of global transversal section

We assume there exists an open subset S C By, also flow-invariant and
G-invariant, in which the foliation has a global transversal section, i.e. we
can select one representative from each orbit in S, such that all such
representatives form a smooth manifold M C S, which is everywhere

transversal to the group orbits. We call this manifold a Representative
Manifold (RM).

vUesS, F(g,V)egGxM: U=T(g)V.

46
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Representative Manifold

@ The RM has co-dimensionality equal to the dimensionality of the
group orbits, i.e. in our case codim M = d = 3.

@ It is assumed to be smooth and we expect that it can locally be
described by equations

where functions u, : B — R, i.e. are functionals when interpreted in
terms of the original RDS.

(and possibly some inequalities: see later).
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Representative Manifold of Standard Spiral Waves

@ Let S consist of spiral waves, in which we can uniquely identify a tip
position and its orientation.

@ Then M can be chosen to consist of those spiral waves that are in a
standard position: tip at the origin, with a fixed orientation.

@ Obviously any spiral wave from S can be brought to the standard
position by a unique Euclidean transformation.

Example:
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Decomposition of a trajectory: geometrically

Skew-product decomposition of an
equivariant flow using a Representa-
tive Manifold M, which has exactly
one transversal intersection with ev-
ery group orbit g € G and is diffeo-
morphic to the orbit manifold. Tra-
jectory (U,U’,U"”) of an equivari-
ant flow in B is a relative periodic
orbit: it projects onto the trajectory
(V,V', V" =V) on M which is pe-
riodic. The flow on M is devoid of
symmetry G.

group extension
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Decomposition of a trajectory: analytically

So for all t > 0, we have

where
(RM) % =Fm(V) base
(GO) T(g 71)dT(t )V = Fg(V) extension
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A practical approach

ov

yr F+A (basel)
we(M(t)) =0, £=1,...,d, (base2)
T(g_l)dT(g)V =-A (extension)

dt ’

where
A= A(V7g7 t) = —Fg(V) - Hg(V,g, t)

is a vector belonging to the three-dimensional tangent space of the group
orbit T(G)(V) at V.

Vector A is obtained from (basel) as a condition that V continues to
satisfy (base2). Having thus found A we can proceed with solving
(extension).

51/65



Differentiation of the Euclidean group

@ To make this into a working algorithm, we need to translate it from
abstract language to the terms of the original PDE.

@ Vector A is a result of action of a linear combination of the
generators of the Lie group T(G) as linear operators on V.

o Let us introduce coordinates (R, ©) on G = SE(2):

g=(R.©) : Frs R+ &7°F,
where 4 = [ (1) _01 ] so exp(4©) is mx of rotation by angle ©.

Then
A= wdpv + (¢ Vv,

where .
w=0, ¢=e°R, Do = x0, — y0,

(6 is the polar angle in the (x,y) plane)



Result: skew-product description

Base: reaction-diffusion in the tip frame of reference

Ov 9,
pr = DV?v +f(v) + (¢- V)v + wa—;, reaction+diffusion+advection
vi(0, t) = u,, vP)(0, 1)

= v,, tip position
av(B)(0, t) L
—— = =0, tip orientation

Ox

Extension: tip equations of motion

doe dR 5
- Y9
dt e ¢
Dynamic variables: v(7, t) &(

(NB: can identify R? —
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© Appendix 2: Details of calculations of trajectory size
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Problem setting

Equations along the group (tip EoM):

de dp :

— = Q(t — = V(t) e¥

Loaw,  Love
where p = p, + ip, € C is tip's complex coordinate and ¢ is its
orientation angle, and Q(t) and V/(t) are defined by the quasiperiodic
base dynamics,

Q(t) = w(0(r)),  V =v(6(t)),

where 6 € T™ = (R/27Z)™ are coordinates on the invariant m-torus,
m > 2, so that

0=uw,
and w € R™ is a set of (typically incommensurate) frequencies.
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The Rl-extension of the quasiperiodic dynamics

First step: point with coordinate g € R! moving according to

dq i(n d)) d1/’ _
Z Spe i
neZk

where 1) € TX, v € R¥, k > 2. Termwise integration gives

()

q(t) =

neZk

/
Here and later, Z is the sum over n # 0.
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The Rl-extension of the quasiperiodic dynamics

Consider .
1 —is,

(n-v)

A(t;v) = q(t) — q(0) — st = Y

e For a typical v, its components are incommensurate.

@ The denominators in the infinite sum are nonzero, but many of them
are very small.

@ However if s(1)) is sufficiently smooth, its Fourier coefficients s,
quickly decay with |n|.

@ Therefore, the infinite sum remains bounded for t > 0, for typical
s(t) and almost all v (Nicol etal 2001).

@ But: bounded by what? How big the trajectories may be?
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The Rl-extension of the quasiperiodic dynamics

E.g.: let p(t) Ig(t) —sot,  A(v) = p(t) — p(0),
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The Rl-extension of the quasiperiodic dynamics

pr() =T Adw)dt,  oF(w) =T [ |Adv) — nr(@) dt,

@ For almost any vector v, this o2 (v) is finite.
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The Rl-extension of the quasiperiodic dynamics

@ For almost any vector v, this o2 (v) is finite.

e Typically all s, are nonzero, so o2 (v) is infinite for all v such that
(n-v) =0, and this is an everywhere dense set.
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The Rl-extension of the quasiperiodic dynamics

@ For almost any vector v, this o2 (v) is finite.

e Typically all s, are nonzero, so o2 (v) is infinite for all v such that
(n-v) =0, and this is an everywhere dense set.

e Function o, (v) is almost everywhere defined and finite, but is
everywhere discontinuous, and discontinuities are not removable.
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The Rl-extension of the quasiperiodic dynamics

@ For almost any vector v, this o2 (v) is finite.

e Typically all s, are nonzero, so o2 (v) is infinite for all v such that
(n-v) =0, and this is an everywhere dense set.

e Function o, (v) is almost everywhere defined and finite, but is
everywhere discontinuous, and discontinuities are not removable.

@ For any physical purpose, question of the value of the function at a
particular point is meaningless.
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The Rl-extension of the quasiperiodic dynamics

@ For almost any vector v, this o2 (v) is finite.
e Typically all s, are nonzero, so o2 (v) is infinite for all v such that
(n-v) =0, and this is an everywhere dense set.

e Function o, (v) is almost everywhere defined and finite, but is
everywhere discontinuous, and discontinuities are not removable.

@ For any physical purpose, question of the value of the function at a
particular point is meaningless.

@ A deterministic view on function o (¥) is inadequate, and we are
forced to adopt a probabilistic view
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The Rl-extension of the quasiperiodic dynamics

Suppose we know v approximately, say, its probability density is uniformly
distributed in B = Bj(1p), a ball of radius ¢ centered at v5. The
expectation of the trajectory size is then

1/2

1 1 1 sp(v 2
Bl = mes(B) /GOO(V) = mes(B) / D |(nfu))|2 dv.
B B

neZk

The set of hyperplanes (n-v), n € Z* is everywhere dense. For any n
such that {v: (n-v) =0} N B # 0, we have

1
Elow(®)] 2 mes(B) B/

That is, the deviation from steady motion is almost certainly finite, but
its average expected value is infinite.

sn(v)

(n,v)

“d
dVZA/ —Z:+oo.
— |7
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SE(2) extension: quasiperiodic hypermeander

. dp do
— =v(0) '%, — = w(h), — =weR"
v(0) e 1 = o) T
where tip position p € C, tip orientation ¢ € T!, coordinates on the

invariant torus 0 € T™.

@ The system for ¢ and 6, with unfolding ¢ € R, makes a R!
extension, so ¢ = g + wyt + $(#), where ®(0) is, according to the
above results, typically a bounded function of 6 = wt.

Q@ Then .

dp ~ do ~ m

dt (9) a =w= (Wamerl) eR +17

where wm i1 = w, 6 =(0,0ms1) € T and

v(0) = V() e® ei*0 eini1 is in turn a pair of R extension (with

a special feature: vy = 0).
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SE(2) extension: quasiperiodic hypermeander

The moral:

@ The expectation of 0,(©), the size of the trajectory, defined as the
root mean square of the distance of the tip from the centroid of the
trajectory, is infinite.

@ Similar conclusions can be made for the expectation of other
statistics, such as average displacement from the initial point, or for
the suprema of the distance from the centroid or of the displacement
from the initial point.
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Asymptotic distribution of the trajectory size

@ The trajectory size

is large if at least one of the terms in the infinite sum is large.

@ It is most likely that the largest term by far exceeds all the others.

@ So, the distribution of o, can be understood via the distribution of
individual terms M,(©) = |v,(©)[2/(n,@)>2.

@ Clearly, P [/\/I,, > x2] x x 1 asx — 400 as long as
{(n,&) =0} N B # ), and the distribution of o, corresponds to the
distribution of the square root of the largest of such terms.

@ Hence, for a typical continuous distribution of &, we expect

Plos >x] ox x7 1, as x — +oo.
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Growth rate of the trajectory size.

In practice we can observe the trajectory only for a finite, even if large,
time interval T. Let us see how the expectation of the trajectory size
grows with T. E.g.

n",n’€Zmtl

For large T, the principal contribution is provided by terms with n’ = n’
(long story, but true) which gives an approximation
> A P
|AT|" ~ Z (n-3) sin“ ((n-@) T/2).
-0

nezm+i
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Growth rate of the trajectory size.

The corresponding expectation is
2 ~
-0)T/2
(n&)T/2) .

4 / sin
Bllarf] = 2 3 e [ TS
mesB 22" | T (03)
Define x, = mes ({@| (n-&) =0} N B), and
[nl = (n? 4+ n,2n+1)1 2 Then
2 1 val?
Xn

21 & _
E[pf]~aT, G=_—"— T
nezm+1

Similarly,
! |Vn|2
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App2

THE FINAL END
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