Some Bifurcations and Wave Patterns Arising in Excitable and Oscillatory Models of Neuroscience Context

B. Ambrosio

Le Havre Normandy University \& Courant Institute SIAM Conference on Dynamical Systems

$$
\begin{gathered}
\text { May 19-23 } 2019 \\
\text { MS } 60
\end{gathered}
$$

Applications of
Dynamical
Systems
May 19-23, 2019
LMAn
Srowbiry, Utah, USA

The FitzHugh-Nagumo (FHN) Reaction-Diffusion (RD)

 system$$
\left\{\begin{align*}
\epsilon u_{t} & =f(u)-v+d u_{x x},(x, t) \in \Omega \times[0,+\infty[\tag{1}\\
v_{t} & =u-c(x)
\end{align*}\right.
$$

whith $f(u)=-u^{3}+3 u, \epsilon$ small, and Neumann Boundary conditions (NBC). In the Neuroscience context, u represents a potential, v a recovery variable and Ω is a bounded domain in \mathbb{R}^{2} or \mathbb{R}.

Outline

(1) Background and history
(2) Patterns, Wave Propagations, Synchronization
(3) Qualitative analysis-Bifurcations

Outline

(1) Background and history
(2) Patterns, Wave Propagations, Synchronization
(3) Qualitative analysis-Bifurcations

Hodgkin and Huxley

500
J. Physial. (1952) 117, 500-544

A QUANTITATIVE DESCRIPTION OF MEMERANE CURRENT AND ITB APPLICATION TO CONDUCTION AND EXCITATION IN NERVE

By A. L. HODGKI nsd A. F. HUXEEY

(Racsiand 10 Mareak 1952)

Hodgkin and Huxley

508

A. L. HODGKIN AND A. F. HUXLEY

From eqn. (6) this may be transformed into a form suitable for comparison with the experimental results, i.e.

$$
\begin{equation*}
g_{\mathrm{K}}=\left\{\left(g_{\mathrm{K} \infty}\right)^{\frac{1}{2}}-\left[\left(g_{\mathrm{K} \infty}\right)^{\frac{1}{2}}-\left(g_{\mathrm{K} 0}\right)^{\frac{1}{2}}\right] \exp \left(-t / \tau_{n}\right)\right)^{4} \tag{11}
\end{equation*}
$$

where $g_{\mathrm{K} \infty}$ is the value which the conductance finally attains and $g_{\mathrm{K} 0}$ is the conductance at $t=0$. The smooth curves in Fig. 3 were calculated from

Fig. 3. Rise of potassium conductance associated with different depolarizations. The circlen are and choline sea water (see Hodgkin \& Huxley, 1952a). The smooth observes were in sea water eqn. (11) with $g_{\mathrm{K0}}=0.24 \mathrm{~m} . \mathrm{mho} / \mathrm{cm}^{2}$ and other parameters as shown in Table 1 . The time acale applies to all reoords. The ordinate acale is the same in the upper ten curves (A to J) and is increased fourfold in the lower two curves (K and L). The number on each ourve givee
the depolarization in mV .

Hodgkin-Huxley Reaction-Diffusion system

$$
\left\{\begin{aligned}
C \frac{d V}{d t}= & V_{x x}+I-\bar{g}_{N a} m^{3} h\left(V-E_{N a}\right)-\bar{g}_{K} n^{4}\left(V-E_{K}\right), \\
& -\bar{g}_{L}\left(V-E_{L}\right) \\
\frac{d n}{d t}= & \alpha_{n}(V)(1-n)-\beta_{n}(V) n \\
\frac{d m}{d t}= & \alpha_{m}(V)(1-m)-\beta_{m}(V) m \\
\frac{d h}{d t}= & \alpha_{h}(V)(1-h)-\beta_{h}(V) h
\end{aligned}\right.
$$

NOBEL PRIZE 1963

" For their discoveries concerning the ionic mechanisms involved in excitation and inhibition in the peripheral and central portions of the nerve cell membrane." See www.nobelprize.org.

"To this day their work stands as one of the best examples of how scientists can use mathematics to provide insights into complicated biological systems." Nature Education-2010

The Bonhoeffer-Van der Pol model (FitzHugh-Nagumo equations)

$$
\left\{\begin{array}{l}
x_{t}=c\left(y+x-\frac{x^{3}}{3}+z\right) \tag{2}\\
y_{t}=-(x-a+b y) / c
\end{array}\right.
$$

with $1-2 b / 3<a, 0<b<1, b<c^{2}$; z stimulus intensity, an arbitrary function of t which can be a Dirac
(Original FitzHugh paper, p 447)

FitzHugh (1961)

"The one to be described in the present paper considers the HH as one member of a large class of non-linear systems showing excitable and oscillatory behavior."

[^0]
Van der Pol (1926)

(After Liénard's Transformation)

$$
\left\{\begin{array}{l}
x_{t}=c\left(y+x-\frac{x^{3}}{3}+z\right) \tag{3}\\
y_{t}=-x / c
\end{array}\right.
$$

Bonhoeffer (1948)

Frg. 8. $x y$ diagram for current densities barely above rheobase. Single activation. Fig. 8 is obtained from Fig. 6 by raising the curves $B F_{1}$ and $L M_{2} F_{2}$. The notations and the meaning of the lines are the same as in Fig. 6.

Fig. 9, $x y$ diagram for higher current densities. Rhythmic activation. The notation and the meaning of the lines are the same as in Fig. 6.

FitzHugh-Nagumo equations

In 1962, Nagumo et al. provided the analog equivalent circuit.

See:
Nagumo J., Arimoto S., and Yoshizawa S. (1962) An active pulse transmission line simulating nerve axon. Proc. IRE. 50:2061-2070. Now, the BVP model is called the FHN system.

The FHN ODE system

$$
\left\{\begin{align*}
\epsilon u_{t} & =f(u)-v \tag{4}\\
v_{t} & =u-c
\end{align*}\right.
$$

whith $f(u)=-u^{3}+3 u, \epsilon$ small.

The FHN ODE system : excitable and oscillatory behavior

Figure: Solutions of system (4), for typical values of c.

The FHN ODE system

Theorem 1
There exists a unique stationary point. If $|c| \geq 1$ the stationary point is globally asymptotically stable, whereas if $|c|<1$, it is unstable and there exists a unique limit-cycle which attracts all the non constant trajectories. Furthermore, at $|c|=1$, there is a supercritical Hopf bifurcation.

Outline

(1) Background and history

(2) Patterns, Wave Propagations, Synchronization
(3) Qualitative analysis-Bifurcations

$\mathbf{c = 0} \mathbf{;} \mathrm{IC}:$ Uniform law on $[0,1]$

Asymptotic homogeneous space behavior for (1) ($u\left(x_{1}, x_{2}, 0\right)$). Initial conditions: uniform law on $[0,1]$.

Asymptotic evolution of a solution of (1) at some space points. Red line: $u\left(x_{1}, x_{2}, t\right)$ for $\left(x_{1}, x_{2}\right)=(50,50, t)$, for time $t \in[180,200]$. Red line:
$\left(x_{1}, x_{2}\right)=(50,100, t)$. Blue line: $\int_{\Omega} u(x, t) d x$.

General case

Is there other solutions?

c=0; IC:Specific

Asymptotic non-homogeneous space behavior of spiral type for (1) ($u\left(x_{1}, x_{2}, 190\right)$). Initial conditions:
$\left(u_{0}(x), v_{0}(x)=(1,0)\right.$ on Left Top (LT) square, $(0,1)$ on RT, $(0,-1)$ on LB , $(-1,0)$ on RB.

Asymptotic evolution of a solution of (1) at some space points. Red line: $u\left(x_{1}, x_{2}, t\right)$ for $\left(x_{1}, x_{2}\right)=(50,50, t)$, for time $t \in[180,200]$. Green line: $\left(x_{1}, x_{2}\right)=(50,100, t)$.

Blue line: $\int_{\Omega} u(x, t) d x$.

Numerical simulations

Asymptotic non-homogeneous space behavior of four spiral type for (1) ($\left.u\left(x_{1}, x_{2}, 190\right)\right)$. Initial conditions: we reproduce four times the previous one with symmetry.

Asymptotic evolution of a solution of (1) at some space points. Green line: $u\left(x_{1}, x_{2}, t\right)$ for $\left(x_{1}, x_{2}\right)=(50,50, t)$, for time $t \in[180,200]$. Red line: $\left(x_{1}, x_{2}\right)=(50,100, t)$. Blue line: $\int_{\Omega} u(x, t) d x$.

$c=0$;Invariant subspace

Theorem 2

Suppose that we can divide the domain into a partition $\Omega=\left(\cup_{i \in\{1, \ldots, /\}} U_{i}\right) \cup\left(\cup_{i \in\{1, \ldots, /\}} V_{i}\right)$ such that there exists a diffeomorphism ϕ that maps each U_{i} to $V_{i}, i \in\{1, \ldots, I\}$, with $\left|\operatorname{det} J_{\phi}\right|=1$, where J_{ϕ} is the jacobian of ϕ and initial conditions such that for all $x \in \cup_{i \in\{1, \ldots, /\}} U_{i}$ and for all $t \in \mathbb{R}^{+}$, $(u(\phi(x), t), v(\phi(x), t))=-(u(x, t), v(x, t))$ then the solution of (1) cannot evolve asymptotically around (\bar{u}, \bar{v}).

See: B. A., M.A. Aziz-Alaoui, Basin of Attraction of Solutions with Pattern Formation in Slow-Fast Reaction-Diffusion Systems Acta Biotheoretica 64 (4), (2016), 311-325.

$\mathbf{c}=\mathbf{0}$; IC:Uniform law on $[-1,1]$

Asymptotic non-homogeneous space behavior of multiple spiral type for (1) ($\left.u\left(x_{1}, x_{2}, 0\right)\right)$. Initial conditions: uniform law on $[-1,1]$.

Asymptotic evolution of a solution of (1) at some space points. Red line: $u\left(x_{1}, x_{2}, t\right)$ for $\left(x_{1}, x_{2}\right)=(50,50, t)$, for time $t \in[180,200]$. Green line: $\left(x_{1}, x_{2}\right)=(50,100, t)$. Blue line: $\int_{\Omega} u(x, t) d x$.

c x-dependant. Propagation of oscillatory signals

Is the system (1) able to generate oscillatory signals and to propagate it?

c x-dependant. Propagation of oscillatory signals

Is the system (1) able to generate oscillatory signals and to propagate it?
Yes, the idea being:
" Oscillatory signal initiates at some point and propagates along excitatory tissue thanks to diffusion."

c x-dependant. Propagation of oscillatory signals

We will consider functions such that:

- $c(x)<-1$ for x close to the border, (Excitatory dynamics for the ODE system)
- $c(x)=0$ for x close to the center, (Oscillatory dynamics for the ODE system)

c x-dependant. Propagation of oscillatory signals (2D)

Downloaded from httpi//rsta.royalsocietypublishing.org/ on July 2, 2015
4870
B. Ambrosio and J.-P. Françise

Figure 1. Solutions for $\delta=0.01, \varphi_{0}=-1.3$ and (a) $u(x, y, 50),(b) u(50,50, t)$ (solid line) and Figure 1. Solutions for $\delta=0.01, c_{0}=-1.3$ and (a) $u(x, y, 50),(b) u(50,50, t)$ (sollat line) and
$(c)(a, v)(50,50, t)$ (solid line). (a) Evolution to stationary solution for $c_{0}=-1.3$ and $t=50 ;(b)$ evolution of the variable u for a central cell and $\alpha_{0}=-1.3$; and (c) evolution of (u, v) for a central cell and $c_{0}=-1.3$.

Figure 2. Solutions for $8=0.01, a_{0}=-1.195$. (a) $u(x, y, 50)$, (b) $u(50,50, t)$ (solid line) and (c) $(u, v)(50,50, t)$ (solid lime). (a) Evolution to stationary solution for $\quad 9=-1.195$ and $t=50$ (b) evolution of the variable u for a central cell and $c_{0}=-1.195$; and (c) evolution of (u, v) for a central cell and $c_{0}=-1.195$.

c x-dependant. Propagation of oscillatory signals (2D)

Downloaded from httpi//rsta.royalsocietypublishing.org/ on July 2, 2015
Propagation of bursting oscillations
4871

Figure 3. Solutions for $\delta=0.01, c_{0}=-1.19302(T=200)$. ($\left.a\right) u(x, y, 50),(b) u(50,50, t)$ (solid line) and (c) $(u, v)(50,50, t)$ (solid line). (a) Solution for $c_{0}=-1.19302$ and $t=50$; (b) evolution of the variable u for a central cell and $a)=-1.19302$; and (c) evolution of (u, v) for a central cell and $c_{0}=-1.19302$.

 (solid line) and (c) $(u, v)(50,50, t)$ (solid line). (a) Solution for $c_{0}=-1.19302$ and $t=50$; (b) evolution of the variable u for a central cell and $c_{0}=-1.19302$; and (c) evolution of

c x-dependant. Propagation of oscillatory signals (2D)

Downloaded from httpi//rsta.royalsocietypublishing.org/ on July 2, 2015

Figure 5. Solutions for $\delta=0.01, c_{0}=-1.19$. (a) $u(x, y, 50)$, (b) $u(x, y, 62),(c) u(50,50, t)$ (solid line), (d) $u(51,50, t)$ (solid line), (e) $(u, v)(50,50, t)$ (solid line) and (f) $(u, v)(51,50, t)$ (solid line). (a) Solution for $c_{1}=-1.19$ and $t=50 ;(b)$ solution for $\left.a\right)=-1.19$ and $t=62 ;(c)$ evolution of the variable u for a central cell and $a=-1.19 ;(d)$ evolution of the variable u for a non-central cell and $\varsigma_{0}=-1.19$; (e) evolution of (u, v) for a central cell and $\varsigma_{0}=-1.19$; and (f) evolution of (u, v) for a non-central cell and $q_{0}=-1.19$.
(b) Numerical simulations of system (4.1) and propagation of the bursting oscillations
The same result is observed numerically: there is a threshold such that, if the excitability c_{0} is below the threshold, the solution evolves to a stationary solution. If it is above, there is a propagation of the bursting oscillations. The number of

c x-dependant. Propagation of oscillatory signals (2D)

Downiloaded from http//fsta.royalsocietypublishing.org/ on July 2, 2015
Propagation of bursting oscillations
(b)

(d)

Figure 6. Solutions for $\delta=0.01, c_{0}=-1.15$. (a) $u(x, y, 55)$, (b) $u(50,50, t)$ (solid line), (c) $u(51,50, t)$ (solid line), (d) $(u, v)(50,50, t)$ (solid line) and (e) ($u, v)(51,50, t)$ (solid line). (a) $u(51,50, t)$ (solid line), ($d)(u, v)(50,50, t)$ (solid line) and (e) $(u, v)(51,50, t)$ (solid line). (a)
Solution for $c u=-1.15$ and $t=55$; (b) evolution of the variable u for a central cell and Solution for $a=-1.15$ and $t=55 ;(b)$ evolution of the variable u for a central cell and $a=$
$-1.15 ;$ (c) evolution of the variable uor a non-central cell and $c_{0}=-1.15 ;(d)$ evolution of (u,v) for a central cell and $a_{0}=-1.15$; and (e) evolution of (u, v) for a central cell and $c_{1}=-1.15$.
$c \times$ and t-dependant. Propagation of bursting signals (2D)

Downloaded from http://rsta royalsocietypubilshing.org/ on July 2, 2015

4874
B. Ambrosio and J.-P. Françoise

Figure 7. Solutions of the system (4.1), for $\gamma=0.05$ and $c=-1,05 .(a) u(x, y, 28),(b) u(50,50, t)$ (red line), $u(51,50, t)$ (green line) and $u(99,50, t)$ (blue line) and (c) $u(x, 49, t)$ (red line).

c x-dependant. Propagation of oscillatory signals (1D)

(a) Solution stationnaire

(b) Bifurcation

(c) Propagation d'ondes

Figure: Bifurcation from stationnary solution to wave propagation.

c x-dependant. Propagation of oscillatory signals (1D)

(a) Solution stationnaire

(b) Bifurcation

(c) Propagation d'ondes

Figure: Bifurcation from stationnary solution to wave propagation.

Networks: Synchronization of Patterns

Figure: Fully connected network. Case $c(x)=0$.

See B. A., M A Aziz-Alaoui. V L E Phan, "Large time behaviour and synchronization of complex networks of reaction-diffusion systems of FitzHugh-Nagumo type" IMA JAM,84(2), (2019), 416-443

Outline

(1) Background and history
 (2) Patterns, Wave Propagations, Synchronization

(3) Qualitative analysis-Bifurcations

Notations

We set

$$
\mathcal{H}=L^{2}(0,1) \times L^{2}(0,1)
$$

$\mathcal{V}=H^{1}(0,1) \times H^{1}(0,1)$ where $H^{1}(0,1)$ is the classical Sobolev space.
$\|\cdot\|$ will denote the norm on \mathcal{H}.

A toy model

We consider

$$
\left\{\begin{array}{l}
u_{t}=\alpha u-u^{3}-v+u_{x x} \tag{5}\\
v_{t}=u
\end{array}\right.
$$

on the domain $(0,1)$ with Neumann Boundary conditions.

Linearization around $(0,0)$

Note first that $(0,0)$ is a constant solution of (5). The linearized system around this point is given by:

$$
\left\{\begin{array}{l}
u_{t}=\alpha u-v+u_{x x} \tag{6}\\
v_{t}=u
\end{array}\right.
$$

on the domain $(0,1)$ with Neumann Boundary conditions.

Linearization around $(0,0)$

Using the spectral decomposition, we can give a detailed and comprehensive analysis of the qualitative behavior of (6). Classically, we set:

$$
\varphi_{0}(x)=1, \text { and } \forall k \in \mathbb{N}^{*} \varphi_{k}(x)=\sqrt{2} \cos (k \pi x)
$$

We recall that the familly $\left(\varphi_{k}\right)_{k \in \mathbb{N}}$ is an othornormal basis of L^{2}, and that the funcions φ_{k} satisfy:

$$
-\left(\varphi_{k}\right)_{x x}=\lambda_{k} \varphi_{k}
$$

and

$$
\left(\varphi_{k}\right)_{x}(0)=\left(\varphi_{k}\right)_{x}(1)=0,
$$

with

$$
\lambda_{k}=k^{2} \pi^{2}
$$

Linearization around $(0,0)$

Looking for solutions of the form,

$$
u(t)=\sum_{k=0}^{\infty} u_{k}(t) \varphi_{k}, v(t)=\sum_{k=0}^{\infty} v_{k}(t) \varphi_{k}
$$

leads by projection on the eigenspace generated by $\left(\varphi_{k}, \varphi_{k}\right)$ to the resolution of the two dimensional ODE systems indexed by k, and denoted by E_{k} :

$$
\left(E_{k}\right)\left\{\begin{align*}
u_{k t} & =\left(\alpha_{k}-\lambda_{k}\right) u_{k}-v_{k} \tag{7}\\
v_{k t} & =u_{k}
\end{align*}\right.
$$

Linearization around $(0,0)$

The eigenvalues of matrix

$$
A_{k}=\left(\begin{array}{cc}
\alpha-\lambda_{k} & -1 \\
1 & 0
\end{array}\right)
$$

are given by
$\sigma_{k}^{1}=\frac{1}{2}\left(\alpha-\lambda_{k}-\sqrt{\left(\alpha-\lambda_{k}\right)^{2}-4}\right), \sigma_{k}^{2}=\frac{1}{2}\left(\alpha-\lambda_{k}+\sqrt{\left(\alpha-\lambda_{k}\right)^{2}-4}\right)$.
We summarize the remarkable properties of σ_{k}^{1} and σ_{k}^{2} in the following proposition.

Proposition 1

When α crosses λ_{k} from left to right, σ_{k}^{1} and σ_{k}^{2} cross the imaginary axis from left to right. Furthermore,

$$
\lim _{k \rightarrow+\infty} \sigma_{k}^{1}=-\infty \text { and } \lim _{k \rightarrow+\infty} \sigma_{k}^{2}=0^{-}
$$

Linearization around $(0,0)$

Theorem 3 (Linearized System)
For $\alpha<0$, for any initial condition $(u(\cdot, 0), v(\cdot, 0))$ in \mathcal{H}, we have

$$
\lim _{t \rightarrow+\infty}\|(u, v)(t)\|=0
$$

Linearization around $(0,0)$

Theorem 4

Let $k \in \mathbb{N}^{*}$. For $\alpha=\lambda_{k},(0,0)$ is a center for system E_{k}, a source for E_{I} if $I<k$ and a sink for E_{I} if $I>k$. Furthermore, if:
$u_{l}(0)=v_{l}(0)=0$ for $I \in\{0, \ldots, k-1\}$ then

$$
\lim _{t \rightarrow+\infty}\left\|(u, v)(t)-\varphi_{k}\left(u_{k}(t), v_{k}(t)\right)\right\|=0
$$

Otherwise,

$$
\lim _{t \rightarrow+\infty}\|(u, v)(t)\|=+\infty .
$$

Linearization around $(0,0)$

Theorem 4 (part 2)
For $\lambda_{k}<\alpha<\lambda_{k+1},(0,0)$ is a source for E_{I} si $I \leq k$ and a sink for E_{I} if $I>k$. Furthermore, if $u_{l}(0)=v_{l}(0)=0$ for $I \in\{1, \ldots, k\}$ then

$$
\lim _{t \rightarrow+\infty}\|(u, v)(t)\|=0
$$

Otherwise

$$
\lim _{t \rightarrow+\infty}\|(u, v)(t)\|=+\infty
$$

Toy Model

Theorem 5 (Nonlinear System)
For $\alpha<0$, for any initial condition $(u(\cdot, 0), v(\cdot, 0))$ in \mathcal{H},

$$
\lim _{t \rightarrow+\infty}\|(u, v)(t)\|=0
$$

Proof

- Lyapunov Function
- LaSalle's Principle

Toy Model

Theorem 6
For $0<\alpha<\lambda_{1}$, if $u(x)=-u(1-x)$ and $v(x)=-v(1-x)$ then for all IC in \mathcal{H}

$$
\lim _{t \rightarrow+\infty}\|(u, v)(t)\|=0
$$

Proof

- Invariant Subspace
- Lyapunov Function
- LaSalle's Principle

Toy Model

Theorem 7
For $0<\alpha<\lambda_{1}$, there exists a sequence $\left(\mu_{k}\right)_{k \in \mathbb{N}}$ such that if

$$
\left(u_{k}(0), v_{k}(0)\right) \in B\left(0, \mu_{k}\right) \subset \mathbb{R}^{2}
$$

then

$$
\lim _{t \rightarrow+\infty}\left\|\left(u(t)-u_{0}(t), v(t)-v_{0}(t)\right)\right\|=0
$$

where $B\left(0, \mu_{k}\right)$ is the ball of center $(0,0)$ and radius μ_{k}.

Proof

- Projection onto subspaces
- Nonlinear terms bounded by:

$$
C \sum_{i=1}^{\infty}\left|u_{i}\right| \sum_{i=1}^{\infty} u_{i}^{2}
$$

- Estimation on each subspace
- Lyapunov function

Asumptions on $c(x)$

We assume that the function $c(x)$, depending on a parameter $p>0$, is regular and satisfies the following conditions:

$$
\begin{array}{rc}
c(x) \leq 0 & \forall x \in(-a, a), \\
c(0)=0, & \\
c^{\prime}(x)>0 & \forall x \in(-a, 0), c^{\prime}(x)<0 \forall x \in(0, a), \\
c^{\prime}(-a)=c^{\prime}(a)=0, & \\
\forall x \in(-a, a), x \neq 0, & c(x) \text { is a decreasing function of } p, \\
\forall x \in(-a, a), x \neq 0, & \lim _{p \rightarrow 0} c(x)=0, \\
\forall x \in(-a, a), x \neq 0, & \lim _{p \rightarrow+\infty} c(x)=-\infty . \tag{14}
\end{array}
$$

Typical example

Figure: Graph of $c(x)$ for $p=5$.

Stationary solution

The stationary solution is given by

$$
\left\{\begin{array}{l}
\bar{v}=f(\bar{u})+d \bar{u}_{x x} \tag{15}\\
\bar{u}=c(x)
\end{array}\right.
$$

Linearized system

The linearized system around (\bar{u}, \bar{v}) writes:

$$
\left\{\begin{align*}
\epsilon u_{t} & =f^{\prime}(\bar{u}) u-v+d u_{x x} \tag{16}\\
v_{t} & =u
\end{align*}\right.
$$

Spectral analysis

We would like to proceed to projection on appropriate subspaces as in previous sections. To that end, we are interested in solutions of the following equation

$$
\begin{equation*}
f^{\prime}(c(x)) u+d u_{x x}=\lambda u \tag{17}
\end{equation*}
$$

with NBC. Note that equation (17) is a regular Sturm-Liouville problem.

Spectral analysis

Theorem 8

There exists an increasing sequence of real numbers $\left(\lambda_{n}\right)$ and an orthogonal basis $(\varphi)_{n \in \mathbb{N}}$ of $L^{2}(-a, a)$ such that:

$$
\begin{aligned}
\left(d \varphi_{n x x}+f^{\prime}(\bar{u}) \varphi_{n}\right. & =\lambda_{n} \varphi_{n} \\
\varphi_{n}^{\prime}(-a)=\varphi_{n}^{\prime}(a) & =0 .
\end{aligned}
$$

Furthermore,

$$
\begin{gathered}
\lim _{n \rightarrow+\infty} \lambda_{n}=+\infty, \\
\inf _{0}=\lim _{u \in H^{2}(-a, a),|u|_{L^{2}(-a, a)}=1} d \int_{(-a, a)}\left|u_{x}\right|^{2} d x-\int_{(-a, a)} f^{\prime}(c(x)) u^{2} d x .
\end{gathered}
$$

and

$$
\lambda_{n}=\frac{\pi^{2} n^{2}}{4 a^{2}}+O(n)
$$

Spectral analysis

The projection on the $k t h$ subspace writes

$$
\left(E_{k}\right)\left\{\begin{align*}
\epsilon u_{k t} & =-\lambda_{k} u_{k}-v_{k} \tag{18}\\
v_{k t} & =u_{k}
\end{align*}\right.
$$

while the eigenvalues are given by

$$
\left\{\begin{align*}
\sigma_{1}^{k} & =\frac{1}{2 \epsilon}\left(-\lambda_{k}-\sqrt{\left(\lambda_{k}^{2}-4 \epsilon\right.}\right) \tag{19}\\
\sigma_{2}^{k} & =\frac{1}{2 \epsilon}\left(-\lambda_{k}+\sqrt{\lambda_{k}^{2}-4 \epsilon}\right)
\end{align*}\right.
$$

Spectral analysis

Theorem 9

For each p, the number of eigenvalues with positive real part is finite. For p small enough, σ_{1}^{0} and σ_{2}^{0} have a positive real part. For p large enough, all the eigenvalues σ_{1}^{k} and σ_{2}^{k} have negative real part. There is an Hopf Bifurcation: there exists a value p_{0} for which as p crosses p_{0} from right to left, σ_{1}^{0} and σ_{2}^{0} are complex and their real part increase from negative to positive. The other eigenvalues remaining with negative real parts. Furthermore,

$$
\lim _{k \rightarrow+\infty} \sigma_{k}^{1}=-\infty \text { and } \lim _{k \rightarrow+\infty} \sigma_{k}^{2}=0^{-}
$$

See: B. A.," Hopf Bifurcation in an Oscillatory-Ecxitable Reaction-Diffusion system with spatial heterogeneity", International Journal of Bifurcation and Chaos, 27(5), (2017)

Stability

Theorem 10
For $p>p_{0}$, there exists a sequence $\left(\mu_{k}\right)_{k \in \mathbb{N}}$ such that if

$$
\left(u_{k}(0), v_{k}(0)\right) \in B\left(0, \mu_{k}\right)
$$

then

$$
\lim _{t \rightarrow+\infty}\|(u(t), v(t))\|=0
$$

where $B\left(0, \mu_{k}\right)$ is the ball of center $(0,0)$ and radius μ_{k}.

Stability

Theorem 11
There exists $\delta>0$ such that for $p_{0}<p<p_{0}+\delta$, there exists a sequence $\left(\mu_{k}\right)_{k \in \mathbb{N}}$ such that if

$$
\left(u_{k}(0), v_{k}(0)\right) \in B\left(0, \mu_{k}\right)
$$

then

$$
\lim _{t \rightarrow+\infty}\left\|\left(u(t)-u_{0}(t), v(t)-v_{0}(t)\right)\right\|=0
$$

where $B\left(0, \mu_{k}\right)$ is the ball of center $(0,0)$ and radius μ_{k}.

Thanks!

[^0]: This approach is, however, not so informative in explaining how trains of impulses occur in the HH equations, where interactions between all four variables are essential. Two other approaches to this problem, also based on phas -space In thods, are more useful. The one to be described in the present paper considers the Ht madel as one member of a large class of non-linear systems show ng excitable an 1 oscillatory ehavior. The phase plane model used by Bonhoeff r (1941. 1948,
 1953) and Bonhocffer and Langhammer (1948) to explain the behavior of passi-

