A Bayesian Framework for Modeling Human Evaluations

Himabindu Lakkaraju¹ Jure Leskovec¹ Jon Kleinberg² Sendhil Mullainathan³

¹Stanford University

²Cornell University

³Harvard University

SIAM International Conference on Data Mining Apr. 30th – May 2nd, 2015

Goal: Evaluating the Evaluators

Goal: Evaluating the Evaluators

How good are evaluators? What mistakes are they making?

The setting: Human Evaluations

Evaluator j

Items

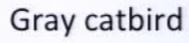
÷

The setting: Human Evaluations

Evaluator j

Decisions of j

Items



Green tanager

Yellow black bird

Yellow black bird

:

The setting: Human Evaluations

Evaluator j

Decisions of j

Items

True Labels

Gray catbird

Gray catbird

Green tanager

Yellow black bird

Yellow black bird

Green tanager

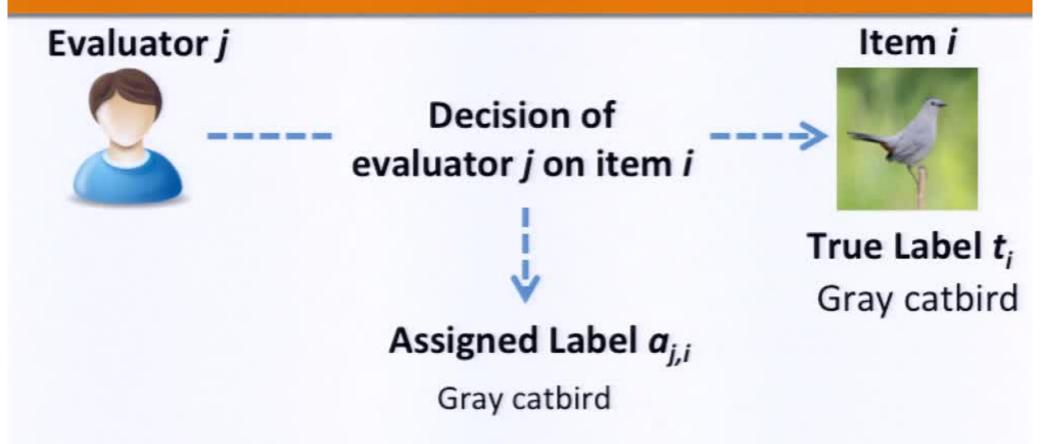
Yellow black bird

Green tanager

How good are evaluators?

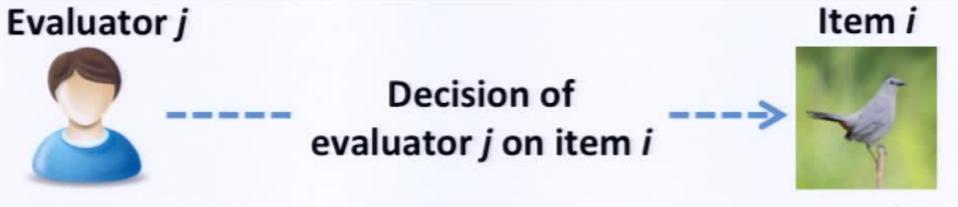


How good are evaluators?



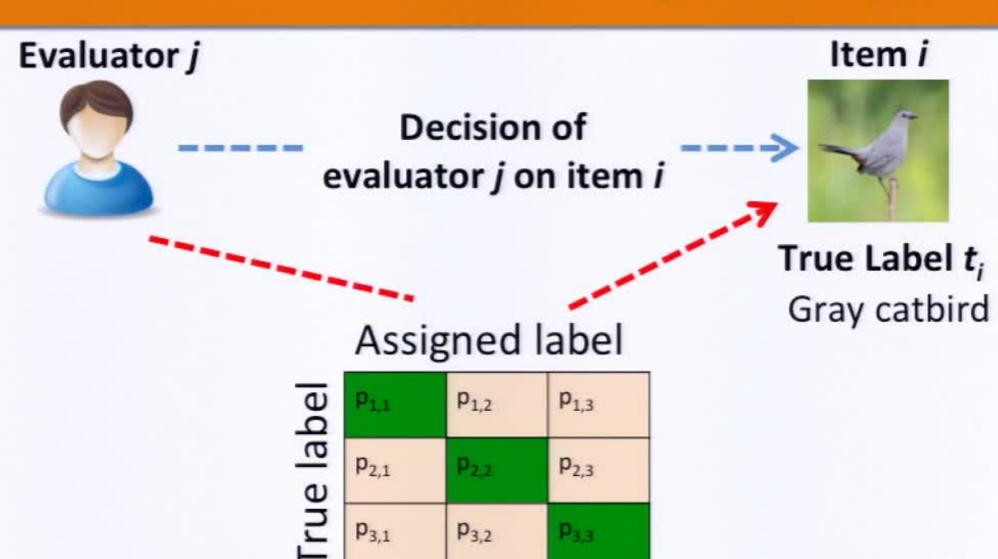
How do we evaluate the quality of evaluator j? Quality of evaluator $j \approx P(a_{j,i} == t_i)$

What mistakes are they making?



True Label t_i Gray catbird

What mistakes are they making?



p_{3,2}

P_{3,3}

p_{3,1}

What mistakes are they making?



Our Goals

- Discover interesting patterns in the collective evaluation process
 - Ex: People with color-blindness often confuse between green tanager and blue catbird

Our Goals

- Discover interesting patterns in the collective evaluation process
 - Ex: People with color-blindness often confuse between green tanager and blue catbird
- Model individual evaluator behavior and decisions
 - Ex: Evaluator j is likely to label a green tanager as yellow blackbird with a probability of 0.6

Challenges & Considerations

Challenges:

- True labels are hard to obtain

Challenges & Considerations

Challenges:

True labels are hard to obtain

Considerations:

- Certain evaluators have similar decision making styles
- Certain items might be confused in similar ways

Problem Setting

Given:

- J: Set of evaluators
- I: Set of items
- D: Decisions made by evaluators on items
- K: Set of class labels to be assigned to items
- a: Attributes of evaluators
- b: Attributes of items
- -z: Small fraction of true labels of items

Problem Setting

Output:

- Discover groups of evaluators and items that share similar decision patterns
- For each such group, infer the corresponding confusion matrix
- Infer true labels of (remaining) items in I

Our Approach

 A Bayesian framework of a series of models that balances the trade-off between modeling individual and collective behavior

Our Approach

 A Bayesian framework of a series of models that balances the trade-off between modeling individual and collective behavior

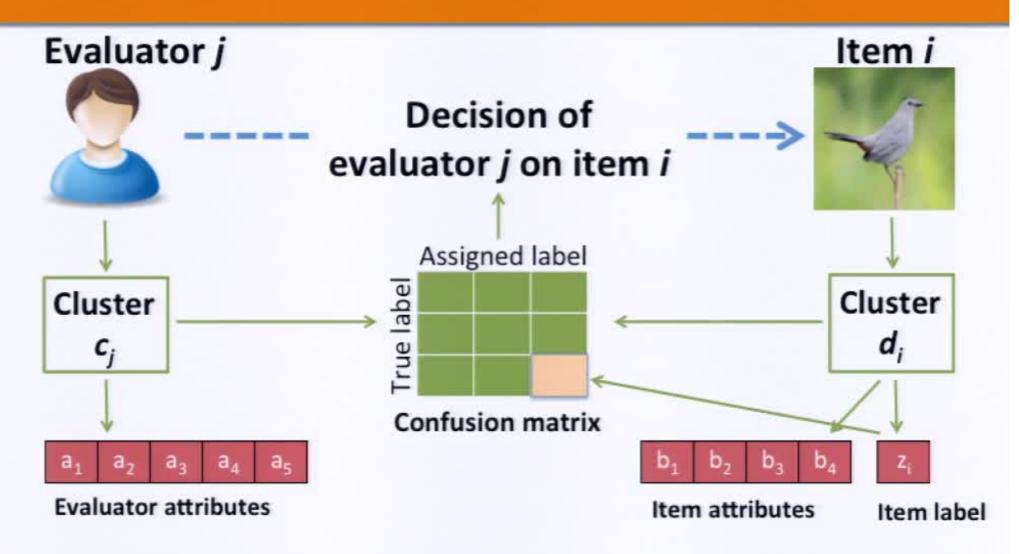
We present three models:

1: Joint Confusion: Joint inference of latent groups of evaluators and items

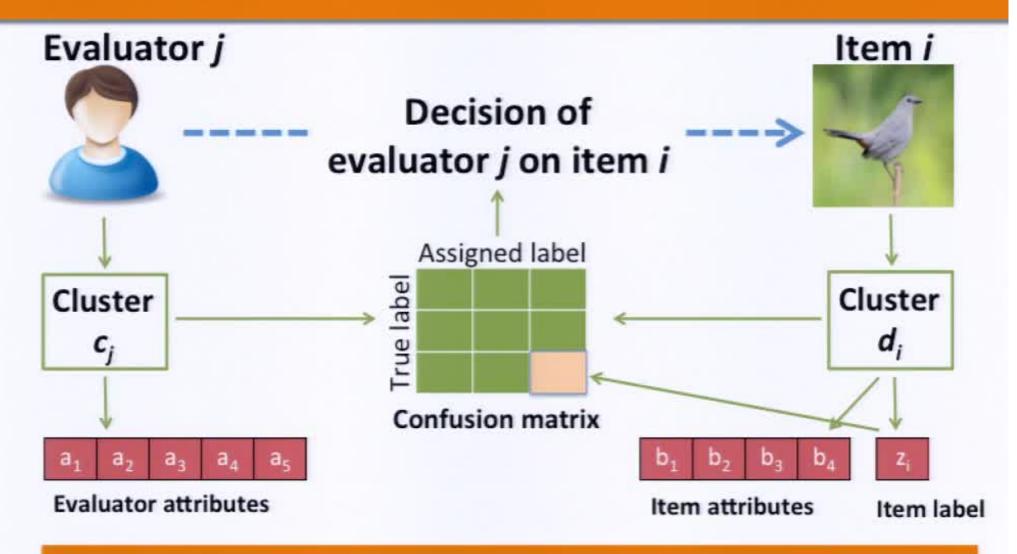
2: Evaluator Confusion: Infer latent groups of evaluators

3: Item Confusion: Infer latent groups of items

1) Joint Confusion Model

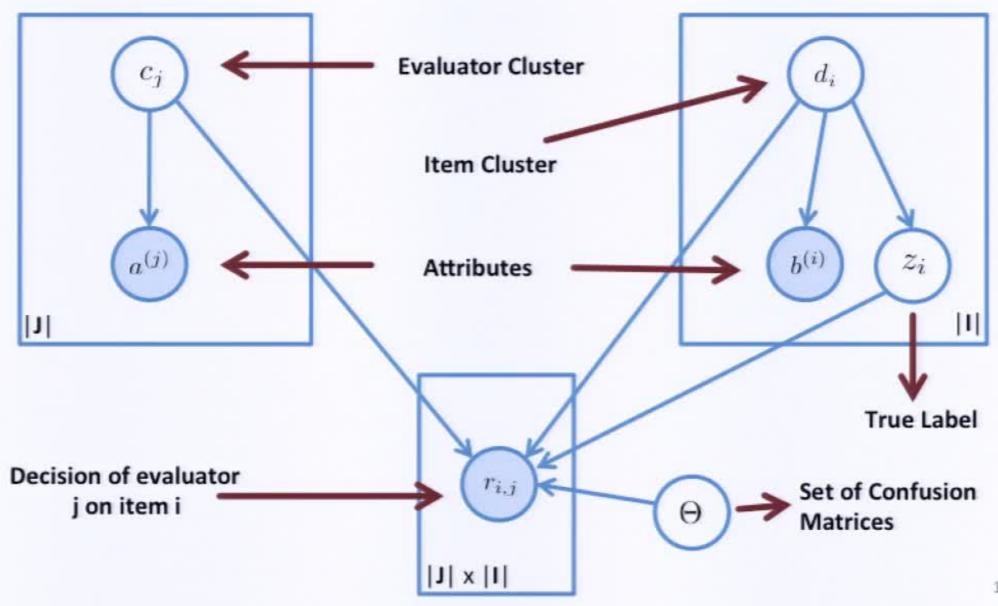


1) Joint Confusion Model



Similar evaluators share confusion matrices when deciding on similar items

Joint Confusion Model: Plate notation



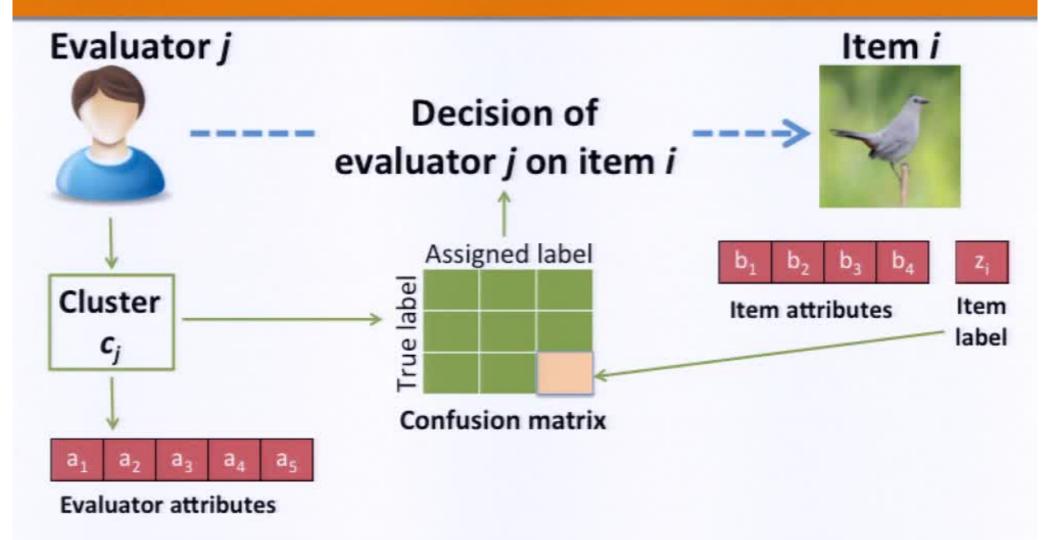
Inference of Joint Confusion Model

- Approximate inference using Collapsed Gibbs sampling
 - Integrate out all the intermediate latent variables
 - We only sample for c_i, z_i, d_i
- Conditional distribution for cluster assignment
 c_j of evaluator j can be computed as:

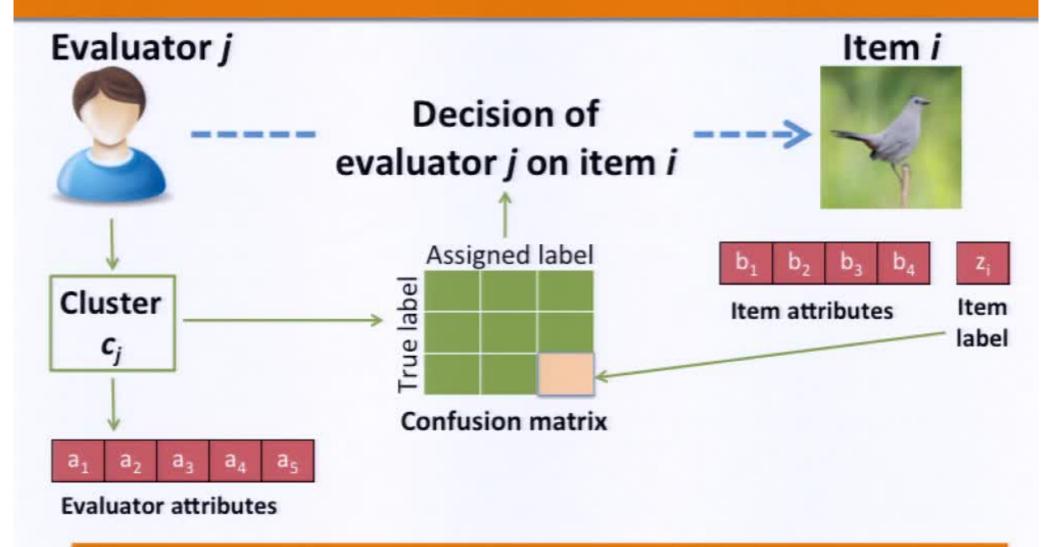
$$P(c_j = c | \boldsymbol{c}^{-j}, \boldsymbol{z}, \boldsymbol{r}, \boldsymbol{a}) \propto P(c_j = c | \boldsymbol{c}^{-j})$$

$$\times \prod_{i \text{ labeled by } j} P(r_{i,j} | \boldsymbol{r}^{-j}, \boldsymbol{c}, \boldsymbol{z}) \times \prod_{n=1}^{N} P(a_n^{(j)} | \boldsymbol{a}^{-j}, \boldsymbol{c})$$

2) Evaluator Confusion Model

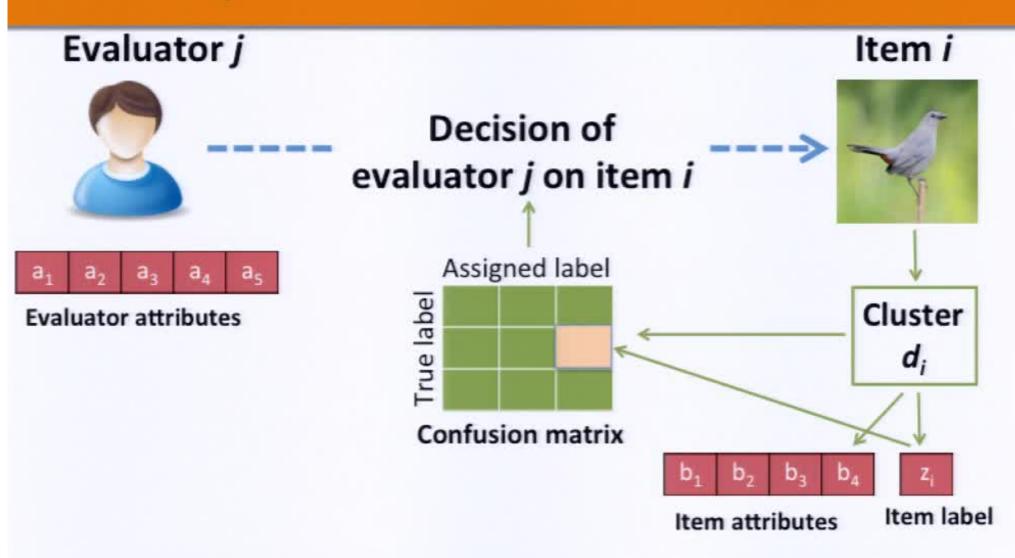


2) Evaluator Confusion Model

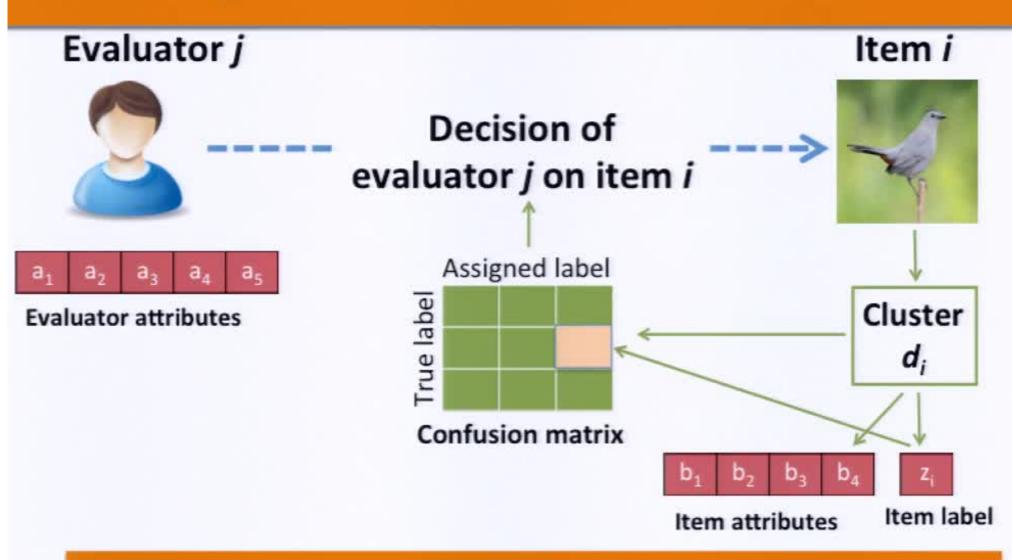


Similar evaluators share confusion matrices

3) Item Confusion Model



3) Item Confusion Model



All evaluators share confusion matrices for similar items

Experimental Evaluation

- Quantitative Evaluation:
 - 1) Estimating confusion matrices
 - 2) Predicting true labels of items
 - Predicting evaluator decisions

- Qualitative Analysis:
 - Insights into patterns of evaluation

Dataset Description

Real world datasets:

Dataset	# of Evaluators	# of Items	# of Decisions
Student Exams	4000	107	214000
Peer Grading	5000	6224	19208
Text Labeling	152	4000	11400
Image Labeling	101	450	3915

Attributes:

- Evaluator properties: age, gender, occupation etc.
- Item properties: topic, length, color etc.

Experimental Setting

- Weakly supervised setting:
 - True labels of only 15% of the items are available to the model
- Inference process is executed till the approximate convergence of log-likelihood
- Number of clusters:
 - Bayesian Information Criterion (BIC)
 - Non-parametric versions of the models

Baselines

- Dawid-Skene Model [JRSS, 1979]:
 - One confusion matrix per evaluator
 - Evaluator confusions are independent
- Single Confusion Model [ICML, 2012]:
 - One confusion matrix shared by all the evaluators

- Other baselines:
 - Logistic Regression for predicting item labels and evaluator decisions

1) Estimating Confusion Matrices

 Metric: Mean absolute error computed across all the entries in all the confusion matrices

Model	Student Exams	Peer Grading	Text Labeling	Image Labeling
Joint Confusion	0.25	0.26	0.23	0.25
Evaluator Confusion	0.32	0.28	0.24	0.27
Item Confusion	0.34	0.34	0.29	0.29
Baseline (Dawid-Skene)	0.33	0.35	0.36	0.32
Baseline (Single Confusion)	0.46	0.42	0.48	0.41

1) Estimating Confusion Matrices

 Metric: Mean absolute error computed across all the entries in all the confusion matrices

Model	Student Exams	Peer Grading	Text Labeling	Image Labeling
Joint Confusion	0.25	0.26	0.23	0.25
Evaluator	0.32	0.28	0.24	0.27
Iter Joint Co		chieves a er the bas	a gain of ab elines	out

2) Predicting Labels of Items

Metric: Accuracy of predicting item labels

Model	Student Exams	Peer Grading	Text Labeling	Image Labeling
Joint Confusion	0.68	0.69	0.69	0.70
Evaluator Confusion	0.65	0.66	0.65	0.60
Item Confusion	0.64	0.64	0.65	0.60
Baseline (Dawid-Skene)	0.60	0.62	0.65	0.60
Baseline (Single Confusion)	0.56	0.57	0.56	0.51
Baseline (Logistic Regression)	0.38	0.53	0.51	0.57

2) Predicting Labels of Items

Metric: Accuracy of predicting item labels

Model	Student Exams	Peer Grading	Text Labeling	lmage Labeling
Joint Confusion	0.68	0.69	0.69	0.70
Evaluator Confusion	0.65	0.66	0.65	0.60
(Dawi Bas		achieves er the ba	a gain of abo selines	out 50 50
(Single Confusion) Baseline (Logistic Regression)	0.38	0.53	0.51	0.57

So far, evaluator decisions are observed

- So far, evaluator decisions are observed
- We can predict evaluator decisions using a supervised setting:
 - Infer latent clusters and matrices using 90% of the data
 - Use inferred cluster assignments and matrices to predict residual 10% of evaluator decisions
 - 10-fold cross validation

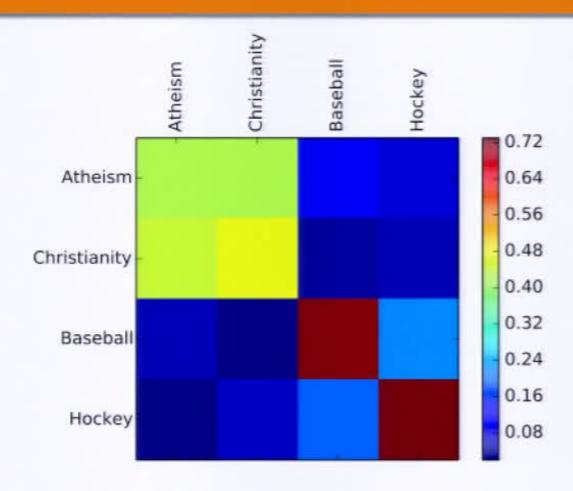
Metric: Accuracy of predicting decisions

Model	Student Exams	Peer Grading	Text Labeling	Image Labeling
Joint Confusion	0.74	0.70	0.71	0.71
Evaluator Confusion	0.72	0.70	0.66	0.69
Item Confusion	0.72	0.69	0.64	0.66
Baseline (Dawid-Skene)	0.61	0.64	0.60	0.64
Baseline (Single Confusion)	0.58	0.53	0.51	0.56
Baseline (Logistic Regression)	0.63	0.66	0.68	0.68

Metric: Accuracy of predicting decisions

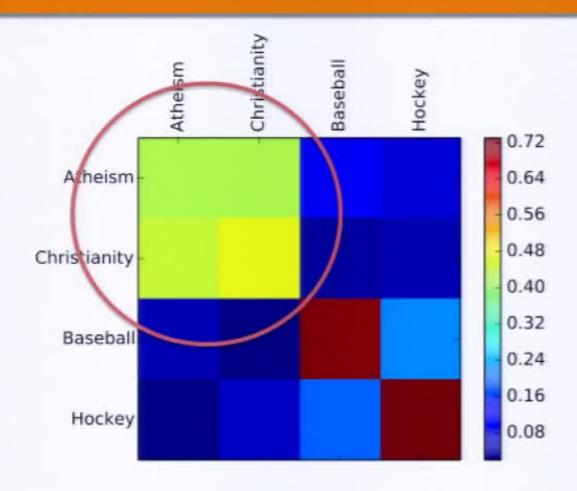
Model	Student Exams	Peer Grading	Text Labeling	lmage Labeling
Joint Confusion	0.74	0.70	0.71	0.71
Evaluator Confusion	0.72	0.70	0.66	0.69
(Dawie Bas		chieves a the basel	gain of abou ines	it 8% ⁵⁶
(Single Confusion) Baseline (Logistic Regression)	0.63	0.66	0.68	0.68

Qualitative Insights – Joint Confusion



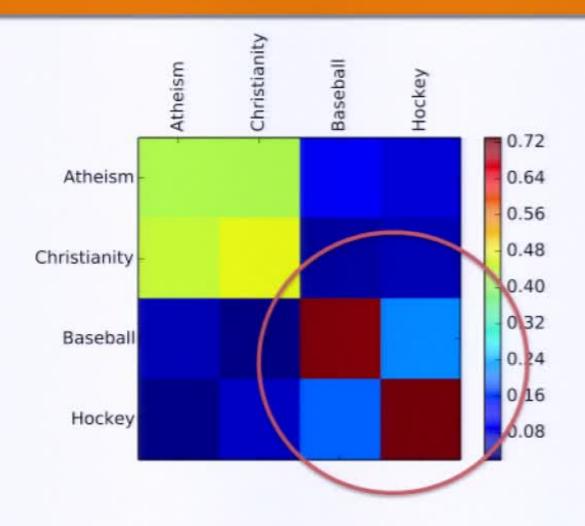
Document Labeling Task: Male evaluators < 23 years old and documents with length < 20 words

Qualitative Insights – Joint Confusion



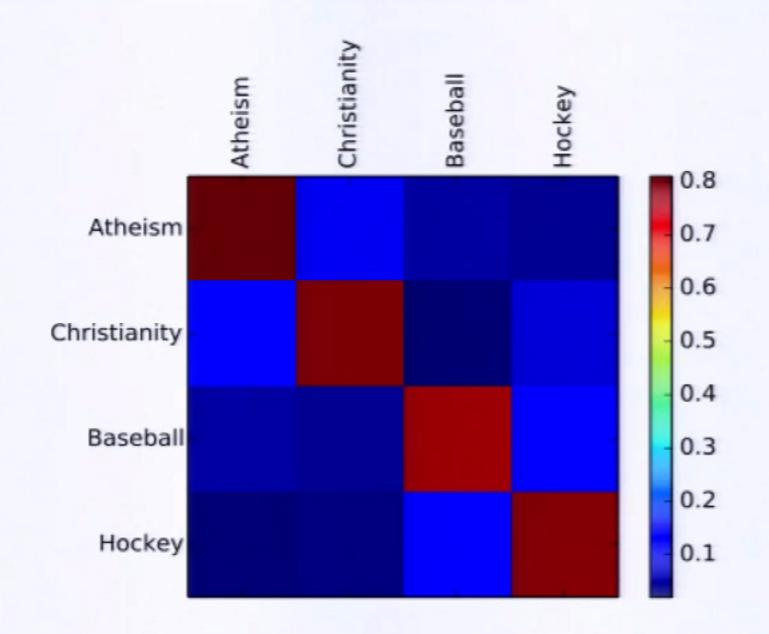
Document Labeling Task: Evaluators are unable to distinguish between atheism and Christianity when documents are short

Qualitative Insights – Joint Confusion



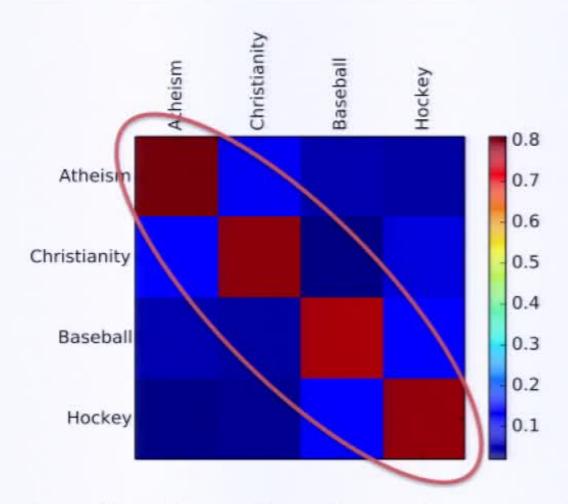
Document Labeling Task: Evaluators are able to differentiate between documents on hockey and baseball even with short document lengths

More Qualitative Insights



Document Labeling Task: Female evaluators with low selfreported confidence scores

More Qualitative Insights



Document Labeling Task: Female evaluators with low selfreported confidence scores are highly accurate

Summary

- A Bayesian framework of a series of models which:
 - Identifies latent groupings of evaluators and items
 - Infers corresponding confusion matrices
 - Infers true labels of items

Summary

- A Bayesian framework of a series of models which:
 - Identifies latent groupings of evaluators and items
 - Infers corresponding confusion matrices
 - Infers true labels of items
- Our framework
 - Facilitates a fine-grained analysis of evaluator quality
 - Provides aggregate insights into patterns of evaluation
 - Mimics real world settings where true labels are hard to obtain

Summary

- A Bayesian framework of a series of models which:
 - Identifies latent groupings of evaluators and items
 - Infers corresponding confusion matrices
 - Infers true labels of items
- Our framework
 - Facilitates a fine-grained analysis of evaluator quality
 - Provides aggregate insights into patterns of evaluation
 - Mimics real world settings where true labels are hard to obtain
- Applications:
 - Recommending evaluators based on item characteristics
 - Recommending training programs based on evaluator skill