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Gray catbird

How do we evaluate the quality of evaluator j?
Quality of evaluator j = P(a;; == t)
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* Discover interesting patterns in the

collective evaluation process

— Ex: People with color-blindness often confuse
between green tanager and blue catbird



* Discover interesting patterns in the

collective evaluation process

— Ex: People with color-blindness often confuse
between green tanager and blue catbird

* Model individual evaluator behavior and

decisions

— Ex: Evaluator j is likely to label a green tanager as
yellow blackbird with a probability of 0.6



* Challenges:
— True labels are hard to obtain



* Challenges:
— True labels are hard to obtain

* Considerations:

— Certain evaluators have similar decision
making styles

— Certain items might be confused in similar
ways



* Given:
—J: Set of evaluators
—|: Set of items
— D: Decisions made by evaluators on items
—K: Set of class labels to be assigned to items
—a: Attributes of evaluators
—b: Attributes of items
—2z: Small fraction of true labels of items



* QOutput:

— Discover groups of evaluators and items
that share similar decision patterns

— For each such group, infer the
corresponding confusion matrix

—Infer true labels of (remaining) items in |



* A Bayesian framework of a series of models
that balances the trade-off between modeling
individual and collective behavior



* A Bayesian framework of a series of models
that balances the trade-off between modeling
individual and collective behavior

* We present three models:

1: Joint Confusion: Joint inference of latent groups
of evaluators and items

2: Evaluator Confusion: Infer latent groups of
evaluators

3: Item Confusion: Infer latent groups of items
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Similar evaluators share confusion matrices

when deciding on similar items
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* Approximate inference using Collapsed Gibbs
sampling

— Integrate out all the intermediate latent variables

— We only sample for ¢, z, d,

* Conditional distribution for cluster assignment
¢; of evaluator j can be computed as:

P(c; =cle™,2z,r,a) x P(c; = c|le™?)

N
x JI  Pluslr™.ez) x [] Plai’la™.¢)

items i labeled by j n=1
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* Quantitative Evaluation:
1) Estimating confusion matrices

2) Predicting true labels of items
3) Predicting evaluator decisions

* Qualitative Analysis:
— Insights into patterns of evaluation



* Real world datasets:

Student Exams 4000 107 214000
Peer Grading 5000 6224 19208
Text Labeling 152 4000 11400

Image Labeling 101 450 3915

* Attributes:

— Evaluator properties: age, gender, occupation
etc.

— Item properties: topic, length, color etc.



* Weakly supervised setting:

— True labels of only 15% of the items are available
to the model

* Inference process is executed till the
approximate convergence of log-likelihood

* Number of clusters:
— Bayesian Information Criterion (BIC)
— Non-parametric versions of the models



* Dawid-Skene Model [JRSS, 1979]:

— One confusion matrix per evaluator
— Evaluator confusions are independent

* Single Confusion Model [ICML, 2012]:

— One confusion matrix shared by all the evaluators

* Other baselines:

— Logistic Regression for predicting item labels and
evaluator decisions



* Metric: Mean absolute error computed across

all the entries in all the confusion matrices

Joint Confusion

Evaluator 0.32 0.28 0.24 0.27
Confusion
Item Confusion 0.34 0.34 0.29 0.29
Baseline 0.33 0.35 0.36 0.32
(Dawid-Skene)
Baseline 0.46 0.42 0.48 0.41

(Single Confusion)

Lower values are better



* Metric: Mean absolute error computed across
aII the entnes in all the confusion matrices
Model Sﬁulem Peer Text

Joint Confusion achieves a gain of about
27% over the baselines

Baseline
(Single Confusion)

Lower values are better



* Metric: Accuracy of predicting item labels

Joint Confusion

Evaluator Confusion

0.65

0.66

0.65

0.60

Item Confusion 0.64 0.64 0.65 0.60
Baseline 0.60 0.62 0.65 0.60
(Dawid-Skene)
Baseline 0.56 0.57 0.56 0.51
(Single Confusion)
Baseline 0.38 0.53 0.51 0.57
(Logistic Regression)

Higher values are better



* Metric: Accuracy of predicting item labels

Model

Joint Confusion

Evaluator Confusion 0.65 0.66 0.65 0.60

Joint Confusion achieves a gain of about
12% over the baselines

(Single Confusion)

Baseline 0.38 0.53 0.51 0.57
(Logistic Regression)

Higher values are better 21



* So far, evaluator decisions are observed



» So far, evaluator decisions are observed

* We can predict evaluator decisions using a
supervised setting:

— Infer latent clusters and matrices using 90% of the
data

— Use inferred cluster assignments and matrices to
predict residual 10% of evaluator decisions

— 10-fold cross validation



* Metric: Accuracy of predicting decisions

Joint Confusion

Evaluator Confusion

0.72

0.70

0.66

0.69

Item Confusion 0.72 0.69 0.64 0.66
Baseline 0.61 0.64 0.60 0.64
(Dawid-Skene)
Baseline 0.58 0.53 0.51 0.56
(Single Confusion)
Baseline 0.63 0.66 0.68 0.68
(Logistic Regression)

Higher values are better



* Metric: Accuracy of predicting decisions

Model

Joint Confusion

Evaluator Confusion 0.72 0.70 0.66 0.69

ek Joint Confusion achieves a gain of about 8% 3

e over the baselines
Ba

(Single Confusion)

Baseline 0.63 0.66 0.68 0.68
(Logistic Regression)

Higher values are better 23



2
£ s = "
T o z g
o = b v
= S < -
% : 0.72
Atheism} 0.64
0.56
Christianity } 410.48
40.40
0.32
Baseball y

0.24

0.16

Hocke
. 0.08

Document Labeling Task: Male evaluators < 23 years old and
documents with length < 20 words



4 Chrigtianity
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Document Labeling Task: Evaluators are unable to distinguish
between atheism and Christianity when documents are short
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Document Labeling Task: Evaluators are able to differentiate
between documents on hockey and baseball even with short
document lengths
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Document Labeling Task: Female evaluators with low self-
reported confidence scores
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Document Labeling Task: Female evaluators with low self-
reported confidence scores are highly accurate



* A Bayesian framework of a series of models which:

— Identifies latent groupings of evaluators and items
— Infers corresponding confusion matrices
— Infers true labels of items



* A Bayesian framework of a series of models which:
— Identifies latent groupings of evaluators and items
— Infers corresponding confusion matrices
— Infers true labels of items

* OQur framework
— Facilitates a fine-grained analysis of evaluator quality

— Provides aggregate insights into patterns of evaluation
— Mimics real world settings where true labels are hard to obtain



* A Bayesian framework of a series of models which:
— ldentifies latent groupings of evaluators and items
— Infers corresponding confusion matrices
— Infers true labels of items

* Qur framework
— Facilitates a fine-grained analysis of evaluator quality

— Provides aggregate insights into patterns of evaluation
— Mimics real world settings where true labels are hard to obtain

* Applications:
— Recommending evaluators based on item characteristics
— Recommending training programs based on evaluator skill



