Semi-Supervised Learning for Structured Regression on Partially Observed Attributed Graphs

Jelena Stojanovic

Milos Jovanovic

Djordje Gligorijevic

Zoran Obradovic

(Temple University)

(University of Belgrade)

(Temple University)

(Temple University)

2015 SIAM International Conference on Data Mining, Vancouver, Canada

Precipitation

Precipitation graph

Precipitation graph

 Read and white nodes: 1,132 measurement stations over the whole continental US over time

- Black nodes: Re-analysis data- outputs of domain climate models on a coarse scale (124 locations)
- Links: Spatial similarities

Precipitation graph observed over time

- Monthly precipitation in individual stations (red and white nodes)
- Missing response variable (label) at some weather stations (white nodes) sometimes even through the whole history
- No missing values in node attributes

Goal t-1: March t-2: February t+1: May t: April

Regression in evolving attributed graphs where response variables (labels) are (always) missing in large fraction of training data.

Possible approaches

- Conditional probabilistic graphical models a powerful framework for structured regression in spatio-temporal datasets
 - GCRF model- not designed to cope with missing data (ignoring)
- Imputation based methods
- Learning from labeled and unlabeled nodes together, rather than expecting the missing data to be treated in a preprocessing stage

Gaussian Conditional Random Fields

- P(y|x) is Gaussian distribution
- Learning: finding parameters α and β is convex optimization
- Inference: Point estimate of y for given x is μ , uncertainty is Σ , where $P(y|x)^{\sim}N(\mu, \Sigma)$

i-GCRF approach

- i-GCRF approach: Ignoring nodes that have missing values
 - Loss of information from graph structure

Our approach

- Objective: utilize entire observed structure of the graph in cases when there are missing labels in data
- Idea: Instead of ignoring nodes with missing labels, include the information that is available by marginalization over the unlabeled examples

Marginalized Gaussian Conditional Random Field (m-GCRF) model

The idea: Marginalize out the effect of unlabeled data when calculating conditional probability $P(y_L | X)$ from joint probability $P(y_L, y_U | X)$ of labeled (y_L) and unlabeled data (y_U) :

$$P\left(\begin{bmatrix} y_L \\ y_U \end{bmatrix} \middle| \begin{bmatrix} X_L \\ X_U \end{bmatrix}\right) \sim N\left(\begin{bmatrix} \mu_L \\ \mu_U \end{bmatrix} \underbrace{\begin{bmatrix} Q_{LL} & Q_{LU} \\ Q_{UL} & Q_{UU} \end{bmatrix}}^{-1}\right)$$

$$P(y_{L} | X) = \int_{y_{U}} P(y_{L}, y_{U} | X_{L}, X_{U}) d_{y_{U}}$$

 Since the original distribution is Gaussian, marginalizing over a subset of variables yields another Gaussian distribution:

$$P(y_L \mid X) \sim N(\mu_L, (Q_{LL} - Q_{LU}Q_{UU}^{-1}Q_{UL})^{-1})$$

i-GCRF vs. m-GCRF

i-GCRF	m-GCRF
	$P(y_{L} X) = \int_{y_{U}} P(y_{L}, y_{U} X_{L}, X_{U}) d_{y_{U}}$
$P(y_L \mid X_L) \sim N(\mu_L, Q_{LL}^{-1})$	$P(y_L X) \sim N(\mu_L, (Q_{LL} - Q_{LU}Q_{UU}^{-1}Q_{UL})^{-1})$

亚

Evaluation on Evolving Graphs with a Large Fraction of Missing Labels

Experiments on ~500 spatio-temporal graphs with up to 80% of missing values under 7 missingness mechanisms (up to 15,000 nodes in 5 time steps)

Examples of missingness mechanisms

Evaluation on Evolving Graphs with a Large Fraction of Missing Labels

training with 80% missing values ?? t-1 t t+1

training with 80% missing values

predicted values in time step t+1:

HGF-GCRF: Harmonic Gaussian Field (HGF) for imputation and GCRF for regression (R² = -1.37)

NN: nonlinear neural network ignoring nodes with missing labels (R² = 0.23)

Labels Missing at Random

Missing Labels of strongly connected nodes (larger weighted degree)

Missing labels of entire neighborhoods (middle - range values)

Missing Labels of weakly connected nodes (smaller weighted degree)

Missing Labels of strongly connected nodes (larger weighted degree), keeping neighborhood

Missing labels of entire neighborhoods (extremes)

Climate Application: Precipitation Prediction

- 1. Precipitation prediction with up to 80% missing labels
- 2. Data collection cost reduction

Precipitation Prediction with up to 80% Missing Labels

- ✓ Structured models were more accurate than:
 - an unstructured nonlinear model (NN)
 - and statistically sound multiple imputation (MI) that cannot handle more than 10% missing labels (R² < 0)
- ✓ Using m-GCRF useful information is extracted from partially labeled graph. This was more accurate than:
 - ignoring unlabeled nodes (i-GCRF)
- over-smoothing the values semi-supervised structured model HGF

Natural missingness process

Data Collection Cost Reduction

- Objective: reduce the total number of labels in the dataset for future data collection (e.g. in a need to reduce the cost)
- Help decision-making regarding the relevance of weather stations by examining how models behave under different missingness mechanisms
- Removing most frequent missing stations gives the worst results.
- Removing strongly connected stations preserves fairly similar accuracy when majority of stations are removed

Conclusion

- We proposed Marginalized GCRF method for structured regression on partially observed attributed graphs where nodes might be completely unlabeled in the history
- Experiments on ~500 spatio-temporal graphs with up to 80% of missing values provide evidence that m-GCRF under various missingness mechanisms outperformed all of the benchmarks.
- m-GCRF successfully applied to a challenging problem of predicting precipitation based on a temporal graph with missing observations.
- If there is a need to actively decrease the amount of labels in the data, certain data reduction strategies can be more effective

jelena.stojanovic@temple.edu
http://astro.temple.edu/~tue68039/
http://www.dabi.temple.edu/~zoran/code/sdm15

Thank you for your attention! Questions?