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Spatial Climate Analysis Service. Oregon State University
http://prism.oregonstate.edu/ Map created Jul 10, 2012
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I_['I Precipitation graph

 Read and white nodes: 1,132 measurement
stations over the whole continental US over
time

* Black nodes: Re-analysis data- outputs of

domain climate models on a coarse scale

(124 locations)




IT Precipitation graph

—— observed over time

t-2: February t-1: March

* Monthly precipitation in individual stations (red and white nodes)

« Missing response variable (label) at some weather stations (white
nodes) sometimes even through the whole history

* No missing values in node attributes




t-2: February t-1: March

Regression in evolving attributed graphs where response variables
(labels) are (always) missing in large fraction of training data.
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Inpl
[' Possible approaches

* Conditional probabilistic graphical models - a powerful
framework for structured regression in spatio-temporal

datasets
= GCRF model- not designed to cope with missing data (ignoring)

* Imputation based methods

* Learning from labeled and unlabeled nodes together, rather
than expecting the missing data to be treated in a
preprocessing stage
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IT Gaussian Conditional
Random Fields

N
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* P(y|x)is Gaussian distribution
* Learning: ﬁndlng parameters a and B is convex optimization
* Inference: Point estimate of y for given x is u, uncertainty is Z, where P(y|x)~N(u, Z)



T I-GCRF approach

Iabeled nodes

unlabeled nodes

t-2

» <GCRF approach: Ignoring nodes that have missing values
* Loss of information from graph structure
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T

[' Our approach

labeled nodes

unlabeled nodes

t-2

t-1 t+1

= Objective: utilize entire observed structure of the graph in cases when
there are missing labels in data

« ldea: Instead of ignoring nodes with missing labels, include the

information that is available by marginalization over the unlabeled
examples



|| Marginalized Gaussian Conditional
— Random Field (m-GCRF) model

= The idea: Viarginalize out the effect of unlabeled data when
calculating conditional probability (>, | X ) from joint
probability ~(»,.». | X)of labeled( y,.) and unlabeled data ( v.):

P[[."}_] | [X.*]] N IV([.“:_].[Q:_L O, }- ]
Vi Xy Ly, O Ou
P(J"L | X)= fp(_‘l Vo |l X, Xy }fr,

= Since the original distribution is Gaussian, marginalizing over a
subset of variables yields another Gaussian distribution:

P(J’L | X ) i N(f-ff_ - (Q,LL o QLL-' Qt.-'f..’ _]QL-'L )_l ) 4/30/15 12



IT I-GCRF vs. m-GCRF

-GCRF m-GCRF

P(.VL IX)=J-P()’LEJ’U | XL'JXL’H_W

P(.VL | XL)"" N(A“L!QLL_I) P(.VL | X)"‘ N(‘“L’(QLL _QLL’QL-'L-'“]QL-'L)'I)

Stojanovic. ). Jovanovic. M. Gligorijevic. D. Obradovic. Z.. “Semi-supervised leaming for structured regreéssion on partially observed attributed graphs”. SDM2015 4/30/15 13



|| Evaluation on Evolving Graphs with a Large
Fraction of Missing Labels

Experiments on ~500 spatio-temporal graphs with up to 80%
of missing values under 7 missingness mechanisms (up to
15,000 nodes in 5 time steps)

e RO ™,
B, &‘k -

Examples of missingness mechanisms
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|| Evaluation on Evolving Graphs with a Large
Fraction of Missing Labels

training with 80% missing values

A N
N -

t-1 t t+1

?7?
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training with 80% missing values

- \ =

P
= = .
t-1 t t+1 Ground truth
predicted values in time step t+1:
HGF-GCRF: Harmonic =+ = 3539 : nonlinear neural

Gaussian Field (HGF) for -.:5; T e {; network ignoring nodes
imputation and GCRF = T with missing labels

P
t/.
P,
s /
v,

for regression (R%=0.23)
y S
(Re=-1.37)
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predicted values in time step

training with 80% missing values
- -
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|][' Climate Application: Precipitation Prediction

1. Precipitation prediction with up to 80% missing labels
2. Data collection cost reduction
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II Precipitation Prediction with up to 80%
== Missing Labels

v' Structured models were more accurate than:
* an unstructured nonlinear model (NN)

* and statistically sound multiple imputation (MIl) that cannot handle more
than 10% missing labels (R? < 0)

0.

v Using m-GCRF useful information is o

extracted from partially labeled graph. e g,

This was more accurate than: nt T
- ignoring unlabeled nodes (i-GCRF) ™ e

P &l &l 5 10 F i) 44 + B Ry
b - e of I-!-l'llllll"l-ﬂ III;-I-

* over-smoothing the values semi-supervised
structured model HGF
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'][' Data Collection Cost Reduction

* Objective: reduce the total number of labels in the dataset for future
data collection (e.g. in a need to reduce the cost)

* Help decision-making regarding the 0.62
H!

relevance of weather stations by -
examining how models behave under .
different missingness mechanisms 056  —Random
—Same distribution
v Removing most frequent missing i S —
stations gives the worst results. 0.52 Middle-range
v Removing strongly connected 0
. . .. Natursé S5 4+ 10 4 20 + 40 ; 60 4 80
stations preserves fairly similar % of missing labels

m-GCRF under different strategies of

accuracy when maijority of stations :
removing labels

are removed

Stojanovic. ). Jovanovic. M. Gligorijevic. D_ Obradovic. Z.. “Semi-supervised leaming for structured regression on partially observed attributed graphs”. SDM2015 4/30/15 21



OTil .
[' Conclusion

 We proposed Marginalized GCRF method for structured regression
on partially observed attributed graphs where nodes might be
completely unlabeled in the history

= Experiments on ~500 spatio-temporal graphs with up to 80% of
missing values provide evidence that m-GCRF under various
missingness mechanisms outperformed all of the benchmarks.

* m-GCRF successfully applied to a challenging problem of
predicting precipitation based on a temporal graph with missing
observations.

 If there is a need to actively decrease the amount of labels in the
data, certain data reduction strategies can be more effective
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Thank you for
your attention!

Questions?

elena.stojanovic@temple.edu
http://astro.temple.edu/~tue68039/
http://www.dabi.temple.edu/~zoran/code/sdmi15




