

Exploring the Impact of Dynamic Mutual Influence on Social Event Participation

Tong Xu¹, Hao Zhong², Hengshu Zhu³, Hui Xiong² Enhong Chen¹, Guannan Liu⁴

¹ University of Science and Technology of China,

² Rugters, The State University of New Jersey

³ Baidu Research, Big Data Lab

⁴ Tsinghua University

Background

- Offline social events emerge, which connect cyber and physical social network.
- New challenges raise to organize events and predict attendance.

Motivation 1 - Social Factors

- Social factors affect decision-making process of social event participation.
 - People rely on familiars when RSVPs occur, which results in correlation of offline activities.
 - Correspondingly, active members in social group tend to have stronger connections than average.

Table 1: Comparison for social factors in event series.

	Average for All Events		First Attendance		
	Density	Ave. Weight	Degree	Ave. Weight	
Active	0.7849	0.2343	0.1249	0.0109	
Overall	0.4694	0.1305	0.0498	0.0062	
P-Value	0.000	0.000	0.001	0.004	

Significant distinction between attenders and absentees.

- Traditional techniques tend to introduce social factors as features or constraints.
 - Basic Assumption: Social connections usually indicate similar preference, then intuitively similar decisions on attendance.
- However, they may fail to simulate the novel factors of event-based social network.
 - Potential attenders are always changing, leading to various influence.
 - Connections may not directly affect preference.

Motivation 2 – Dynamic Influence

- Dynamic Social Influence (DSI) may exist within decisionmaking process.
 - Domino Effects:
 One change leads to chain reactions.
 - Dynamic Equilibrium:
 Final agreement
 achieved when all
 influence are stable.

DSI - Problem Statement

Basic Assumption

- · Social factors may not indirectly affect preference.
- Instead, they directly influence the decisions. To be specific, they influence the threshold of discrimination.

$$\mathcal{I}(f_{i,k} - h_{i,k})$$

- Tendency
 - User Preference
 - Event attributes

- Threshold
 - Social Influence
 - General Enthusiasm

DSI - Formulation of Influence

- Social influence are determined by two factors
 - Connection strength.
 - Their own attitude.

$$h(u_i, e_k) = h_{i,0} \cdot \prod_{j \in N_i} \left[1 - \mathcal{I}(f_{j,k} - h_{j,k}) \cdot w_{ji} \right]$$

- Enthusiasm, lower means active to participate events
- Enthusiasm, lower Friends' opinions
 - Connection Strength

DSI – Two-stage Framework

DSI - Two-stage Framework

- Global Target: To achieve stable decisions.
- Training Stage: User profiling with personal preference, enthusiasm and social connections.
 - Minimizing the discriminant error.

$$\arg\min_{\mathbf{p},h_0,w} \sum_{u_i \in U} \sum_{e_k \in E} [s_{i,k}^0 - \mathcal{I}(f_{i,k} - h_{i,k})]^2$$

- Test Stage: Participation analysis on given social event and target user group.
 - Updating $\mathcal{I}(f_{i,k} h_{i,k})$ for each user.

Technical Solution

- Difficult to directly optimize the loss function due to mutual dependence within attenders.
- To ease the optimization task, we propose a step-bystep iterative approach.

$$F^{t}(U, E) = \sum_{u_{i} \in U} \sum_{e_{k} \in E} [s_{i,k}^{0} - \mathcal{I}(f_{i,k}^{t} - h_{i,k}^{t})]^{2}$$

To be specific, opinions achieve in round t-1 will only influence their friends in round t.

$$h_{i,k}^t = h_{i,0}^t \cdot \prod_{j \in N_i} \left[1 - \mathcal{I}(f_{j,k}^{t-1} - h_{j,k}^{t-1}) \cdot w_{ji}^t \right]$$

Algorithm 1 Iterative Solution for Training Stage.

Input: target user group $\mathbf{U} = \{u_i\}$, event set $\mathbf{E} = \{e_k\}$ and attendance records $\{s_{i,k}^0\}$;

Store: event attributes \mathbf{a}_k for each $e_k \in \mathbf{E}$;

Output: users' profile $\langle \mathbf{p}_i, h_{i,0} \rangle$ and social strength w_{ij}

- 1: Iteration = True;
- 2: while (Iteration)
- 3: Iteration = False;
- 4: for $u_i \in \mathbf{U}, e_k \in \mathbf{E}$
- 5: update $\langle \mathbf{p}_i, h_{i,0} \rangle$ and $\{w_{ij}\}$ until convergency;
- 6: update $f_{i,k}$, $h_{i,k}$ based on Equation 3.1;
- 7: update $s_{i,k}$ as $\mathcal{I}(f_{i,k} h_{i,k})$;
- 8: **if** $s_{i,k}$ changed **then** Iteration = True;
- 9: end if
- 10: end for
- 11: end while
- 12: **return** $\{\langle \mathbf{p}_i, h_{i,0} \rangle\}, \{w_{ij}\};$

Experimental Results

- To verify the effectiveness, we perform extensive experiments on real-world data set extracted from official API of *Meetup.com*.
- 422 user groups, 9,605 social events and 24,107 related users are analyzed in total.
- Several state-of-the-art techniques are compared as baselines, including social-constraint PMF and topicsensitive social spread simulation model.

Experiments – Overall Results

Table 4: Overall performance of each approach.

	DSI	SoRec	GcPMF	PSS
Precision (%)	75.88	60.23	47.47	46.15
Improvement (%)	, -	+25.98	+59.85	+64.42
Variance	0.022	0.102	0.134	0.059
P-Value	-	0.000	0.000	0.000
Recall (%)	75.34	75.21	21.73	41.82
Improvement (%)		+0.17	+246.71	+80.16
Variance	0.030	0.112	0.234	0.180
P-Value	14	0.063	0.000	0.000

 Significant margin occur compared with baselines, which validates the potential of dynamic social influence in analyzing social event participation.

Discussion – Interesting Rules

Group	A	В	C	D
Precision	96.15%	94.64%	48.20%	47.01%
Members	129	160	1088	273
Ave. Freshmen	20%	50%	35%	35%
Negative Edges	< 1%	< 1%	7%	4%

- To attend more events, you must be more social.
- Stable core leads to tight connection, while less attractive to freshmen, and vice versa.
- Negative connections results in difficult agreement, then worse predictions.

Conclusion

- Social connections may not only affect the user preferences, but also directly affect the decisionmaking process of event participation.
- Effects of social hubs should be highlighted during the event organization. They should be the first to be satisfied.
- It will be interesting to integrate the DSI framework with more types of social constraint, or some other motivation of attendance.

Thanks!

tongxu@mail.ustc.edu.cn

