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Introduction—LRR

@ Low rank representation (LRR) is an effective method to explore the intrinsic low
rank structures embedded in a data set in high dimensional space, which has
been successfully used in many applications, such as motion segmentation ,
Image segmentation and salient object detection.

@ Given a collection of data points X = {Xj.--- . X5}, LRR seeks a joint low rank
representation of A’ using data points themselves as the dictionary, which can
be formulated as,

mv‘i/n||X—XW||2f/\||W||,, (1.1)

where W = : Is the low rank representation matrix under the dictionary

X.
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Introduction—Covariance maitrices

@ However, for many applications, such as those in machine learning , computer
vision and medical image analysis, data are not characterized by simple vector
features.

e Taking image data as an example, the raw pixel features , such as color, gradient
and filter responses are not robust in the presence of illumination changes and
non-rigid motion. To mitigate the variances in raw pixel features, a natural way is to
gather statistical information of the raw pixel features.

@ The covariance of a set of raw features inside a region of interest is one of the
successful feature descriptors, which is called ‘covariance matrix'.

@ Covariance matrices as feature descriptors offer a convenient platform for fusing
multiple features into a compact form independent of the number of data points.

@ Covariance matrices are symmetric positive definite(SPD). It is well-known that
all the SPD matrices form the so-called curved Riemannian manifold.
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Related work

@ Two issues associated with the SPD matrices

e For the given dictionary atom { Xy}, there is no guarantee for the linear combination

> k—1 Wik Xk to be a SPD matrix.
@ The Euclidean metric does not make sense to measure the error between X and

> k1 Wik X-
@ Current Research on the SPD matrices

e For the first issue, it can be easily resolved by assuming combination coefficients wy

be non-negative.

e For the second issue, different non-Euclidean geometry sirategies have been
proposed for sparse coding, such as the log-determinant divergence, Affine Invariant
Riemannian Measures (AIRM) and Kernel functions.

@ To our best knowledge, none of existing work is specialized for the low rank
representation for SPD matrices measured simultaneously by the Riemmanian

distance and LRR, which motivates our study.
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MU EES

@ A manifold M of dimensional d is a topological space that locally resembles a
Euclidean space R? in a neighbourhood of each point X € M. For example,
lines and circles are 1D manifolds, and surfaces, such as a plane, a sphere, and
a torus, are 2D manifolds.

@ A tangent vector is a vector that is tangent to a manifold at a given point X. All
the possible tangent vectors at X constitutes a Euclidean space, named the
tangent space of M at X and denoted by Tx M.

@ If we have a smoothly defined metric (inner-product) across all the tangent
spaces (-,-)x : TxM x TxM — R on every point X € M, then we call M
Riemannian manifold.

@ There are predominantly two operations for computations on the Riemannian
manifold, namely (1) the exponential map at point X, denoted by
expy : TxM — M, and (2) the logarithmic map, at point X, log, : M — Tx M.
The former projects a tangent vector in the tangent space onto the manifold, the
latter does the reverse.

@ The distance between two points Xj. Xj € M can be calculated through the
following formula as the norm in tangent space:

distar(X, X)) = [| 10, (X)l1x 3.1)
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LRR on Riemannian manifold

@ We propose a novel LRR model on the manifold of SPD matrices. The
approximation quality is measured by the extrinsic Euclidean distance defined
by the metric on tangent spaces.

@ The LER model in Eqg. (1.1) can be changed to the following manifold form:
N 2
>_wilogy (X[ + W]
i=t || j=1 Ix, (4.1)

n
=P Y wm=Li—%2. .=
J=1

n

min
W
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The Difference between Euclidean LRR and our new method
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Figure: The illustration of distance metrics used in our proposed method and Euclidean LRR
methods
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LRR on SPD Matrices

@ Given two points X, Z € S.(d), their distance on tangent space is formulated by

llogx (2)|[% = tr(Log®*(G~'ZG™ ")) (4.2)

where G denotes the square root matrix of X, i.e., G = Xz,

@ Let; = Lug(G{‘X;G{T), then Eq.(4.1) can be written into a matrix form as
follows:

1
m&nﬁgw;G;wa—AHWH*
e (4.3)
sE. Y my—0i—02 . .n
=

where wi; is the i-th row of W, and Q; = [tr(L;jLi)] are n x n matrices.
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Solution to LRR on SPD matrices

@ We propose to use the Augmented Lagrange Multiplier (ALM) method to solve
the constrained optimization problem in Eq. (4.3).

@ First of all, the augmented Lagrange problem of (4.3) can be written as

U= PRy ) E ot
L—;<2W:Q:W: yl(jgwl/ 1)

(5.1)
3 <
- E(Z Wj — 1)2) + || W]«
j=1

where y; are Lagrangian multipliers, and 3 is a weight to tune the error term of
(Z]n:1 W’] e 1)2‘

@ The above problem can be solved by updating one variable at a time with all the
other variables fixed. More specifically, the iterations of ALM go as follows:

e Fix all others to update W.
e Fix all others to update y; by

n
yl.k"“1 —yf+ 3k(Z W,(;H —1) (5-2)
j=1
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Fix all others to update W

S (2 w;Qw; + yil ij —1) + §<S i — >2> + A||W. (5.3)

=1 _1 .:1 ‘ SI?
L=F(W)+\|W|. (5.4)

F(W) =~F(W®) + (0F(W® ), w — w®) + T jw — w2 (5.5)

Taking EqQ.(5.5) into Eq.(5.1), we have
W =argmin F(W®) + (9F(W®). W — w®) + e > IW— WS |E + W

The above problem admits a closed form solution by using SVD thresholding
operator to M = W — LoF(W®).

Fuetal () LRR on Riemannian Manifold of SPD Matrices May 1, 2015 10/ 16



To evaluate the proposed LRR model on the manifold of SPD matrices, we apply it to
both clean and corrupted image datasets for image classification and image
segmentation.

Table: Input Feature Comparisons among Baselines

Baseline Methods Input Features for Classifcation/Clustering
SVM/Ncut Vectoried SPD matrices
LRR+SVM/Ncut Low rank features on the Euclidean space
GKNN/RNcut Original SPD matrix features
SC+SVM/our new method | Low rank features on the Manifold of SPD matrices

Fuetal () LRR on Riemannian Manifold of SPD Matrices May 1, 2015 11/ 16



Performance for Image Classification

Table: Classification Accuracy comparisons on Clean data sets

Brodaiz IDIAP
Class 16 32 5 10 15
SVM 93.36 | 88.67 | 76.54 | 72.75 | 68.56
LRR+SVM | 95.08 | 90.99 | 80.17 | 75.81 | 72.89
GKNN 95.7 | 92.11 | 82.69 | 77.32 | 80.36
SC+SVM | 99.37 | 9543 | 87.71 | 82.69 | 83.78
Proposed | 99.89 | 97.12 | 90.38 | 87.78 | 87.33
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Noise Robustness of the Proposed Model
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Figure: Classification Accuracy comparisons on Noisy data sets
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Performance for Image Segmentation

Table: Image segmentation accuracy on the Automatic Photo Pop-up dataset

Dataset Ncut LRR+Ncut RNcut Proposed
beachO4 76.75 80.55 81.67 84.96
roads03 78.66 82.51 83.68 87.99
beachO1 80.56 84.33 86.56 89.34
build05 75.44 78.34 80.54 83.55
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Conclusions

@ We propose a novel LRR model on the manifold of SPD matrices, in which we
exploit the intrinsic property of SPD matrices manifold in the Riemannian
geometric context.

@ Compared with the existing Euclidean LRR algorithms, the loss of the global
linear structure is compensated by the local linear structures given by the
tangent spaces of the manifold.

@ Further, we derive a easily solvable optimization problem, which incorporates
the structured embedding mapping into the LRR model.

@ Our experiments demonstrate that our proposed method is efficient and robust
to the noise, and produces superior results compared to other state-of-art
methods for classification and segmentation applications on several computer
vision datasets.
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hanks! Questions?
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