Low Rank Representation on Riemannian Manifold of Symmetric Positive Definite Matrices

Yifan Fu 1 Junbin Gao1 Xia Hong2 David Tien1

¹School of Computing and Mathematics Charles Sturt University Bathurst, NSW 2795, Australia Email:{yfu, jbgao,dtien}@csu.edu.au

²School of Systems Engineering University of Reading Reading, RG6 6AY, UK Email:x.hong@reading.ac.uk

May 1, 2015

Introduction-LRR

- Low rank representation (LRR) is an effective method to explore the intrinsic low rank structures embedded in a data set in high dimensional space, which has been successfully used in many applications, such as motion segmentation, image segmentation and salient object detection.
- Given a collection of data points $\mathcal{X} = \{X_1, \dots, X_n\}$, LRR seeks a joint low rank representation of \mathcal{X} using data points themselves as the dictionary, which can be formulated as,

$$\min_{W} \|\mathcal{X} - \mathcal{X}W\|^2 + \lambda \|W\|_{\star} \tag{1.1}$$

where
$$W=\left(\begin{array}{c} \mathbf{w}_1 \\ \vdots \\ \mathbf{w}_n \end{array}\right)$$
 is the low rank representation matrix under the dictionary

 \mathcal{X} .

Introduction-Covariance matrices

- However, for many applications, such as those in machine learning, computer vision and medical image analysis, data are not characterized by simple vector features.
 - Taking image data as an example, the raw pixel features, such as color, gradient
 and filter responses are not robust in the presence of illumination changes and
 non-rigid motion. To mitigate the variances in raw pixel features, a natural way is to
 gather statistical information of the raw pixel features.
- The covariance of a set of raw features inside a region of interest is one of the successful feature descriptors, which is called 'covariance matrix'.
- Covariance matrices as feature descriptors offer a convenient platform for fusing multiple features into a compact form independent of the number of data points.
- Covariance matrices are symmetric positive definite(SPD). It is well-known that all the SPD matrices form the so-called curved Riemannian manifold.

Related work

- Two issues associated with the SPD matrices.
 - For the given dictionary atom $\{X_k\}$, there is no guarantee for the linear combination
 - $\sum_{k=1}^{n} w_{ik} X_k$ to be a SPD matrix.

 The Euclidean metric does not make sense to measure the error between X_k and $\sum_{k=1}^{n} w_{ik} X_k$.
- Current Research on the SPD matrices.
 - For the first issue, it can be easily resolved by assuming combination coefficients wik be non-negative.
 - For the second issue, different non-Euclidean geometry strategies have been proposed for sparse coding, such as the log-determinant divergence, Affine Invariant Riemannian Measures (AIRM) and Kernel functions.
- To our best knowledge, none of existing work is specialized for the low rank representation for SPD matrices measured simultaneously by the Riemmanian distance and LRR, which motivates our study.

Preliminaries

- A manifold M of dimensional d is a topological space that locally resembles a Euclidean space R^d in a neighbourhood of each point X ∈ M. For example, lines and circles are 1D manifolds, and surfaces, such as a plane, a sphere, and a torus, are 2D manifolds.
- A tangent vector is a vector that is tangent to a manifold at a given point X. All
 the possible tangent vectors at X constitutes a Euclidean space, named the
 tangent space of M at X and denoted by T_XM.
- If we have a smoothly defined metric (inner-product) across all the tangent spaces $\langle \cdot, \cdot \rangle_X : T_X \mathcal{M} \times T_X \mathcal{M} \to \mathbb{R}$ on every point $X \in \mathcal{M}$, then we call \mathcal{M} Riemannian manifold.
- There are predominantly two operations for computations on the Riemannian manifold, namely (1) the exponential map at point X, denoted by exp_X: T_XM → M, and (2) the logarithmic map, at point X, log_X: M → T_XM. The former projects a tangent vector in the tangent space onto the manifold, the latter does the reverse.
- The distance between two points $X_i, X_j \in \mathcal{M}$ can be calculated through the following formula as the norm in tangent space:

$$dist_{\mathcal{M}}(X_i, X_j) = \|\log_{X_i}(X_j)\|_{X_i}$$
 (3.1)

LRR on Riemannian manifold

- We propose a novel LRR model on the manifold of SPD matrices. The approximation quality is measured by the extrinsic Euclidean distance defined by the metric on tangent spaces.
- The LR™R model in Eq. (1.1) can be changed to the following manifold form:

$$\min_{W} \sum_{i=1}^{n} \left\| \sum_{j=1}^{n} w_{ij} \log_{X_{i}}(X_{j}) \right\|_{X_{i}}^{2} + \|W\|_{\star}$$
s.t.
$$\sum_{j=1}^{n} w_{ij} = 1, i = 1, 2, \dots, n$$
(4.1)

The Difference between Euclidean LRR and our new method

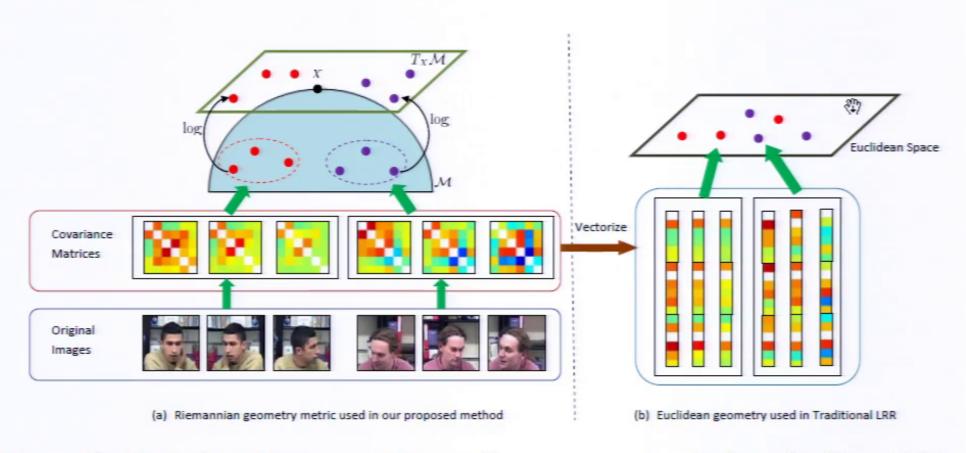


Figure: The illustration of distance metrics used in our proposed method and Euclidean LRR methods

LRR on SPD Matrices

• Given two points $X, Z \in S_+(d)$, their distance on tangent space is formulated by

$$\|\log_X(Z)\|_X^2 = \operatorname{tr}(\operatorname{Log}^2(G^{-1}ZG^{-T}))$$
 (4.2)

where G denotes the square root matrix of X, i.e., $G = X^{\frac{1}{2}}$.

Let L_{ij} = Log(G_i⁻¹X_jG_i^{-T}), then Eq.(4.1) can be written into a matrix form as follows:

$$\min_{W} \frac{1}{2} \sum_{i=1}^{n} \mathbf{w}_{i} Q_{i} \mathbf{w}_{i}^{T} + \lambda ||W||_{\star}$$
s.t.
$$\sum_{j=1}^{n} w_{ij} = 1, i = 1, 2, ..., n$$
(4.3)

where \mathbf{w}_i is the *i*-th row of W, and $Q_i = [\operatorname{tr}(L_{ij}L_{ik})]$ are $n \times n$ matrices.

Solution to LRR on SPD matrices

- We propose to use the Augmented Lagrange Multiplier (ALM) method to solve the constrained optimization problem in Eq. (4.3).
- First of all, the augmented Lagrange problem of (4.3) can be written as

$$L = \sum_{i=1}^{n} \left(\frac{1}{2} \mathbf{w}_{i} Q_{i} \mathbf{w}_{i}^{T} + y_{i} \left(\sum_{j=1}^{n} w_{ij} - 1 \right) + \frac{\beta}{2} \left(\sum_{j=1}^{n} w_{ij} - 1 \right)^{2} + \lambda ||W||_{\star} \right)$$

$$(5.1)$$

where y_i are Lagrangian multipliers, and β is a weight to tune the error term of $(\sum_{j=1}^{n} w_{ij} - 1)^2$.

- The above problem can be solved by updating one variable at a time with all the other variables fixed. More specifically, the iterations of ALM go as follows:
 - Fix all others to update W.
 - Fix all others to update y_i by

$$y_i^{k+1} \leftarrow y_i^k + \beta_k (\sum_{j=1}^n w_{ij}^{k+1} - 1)$$
 (5.2)

Fix all others to update W

$$L = \sum_{i=1}^{n} \left(\frac{1}{2} \mathbf{w}_{i} Q_{i} \mathbf{w}_{i}^{T} + y_{i} \left(\sum_{j=1}^{n} w_{ij} - 1 \right) + \frac{\beta}{2} \left(\sum_{j=1}^{n} w_{ij} - 1 \right)^{2} \right) + \lambda ||W||_{\star}$$
 (5.3)

$$L = F(W) + \lambda ||W||_{\star} \tag{5.4}$$

$$F(W) \approx F(W^{(k)}) + \langle \partial F(W^{(k)}), W - W^{(k)} \rangle + \frac{\mu_k}{2} ||W - W^{(k)}||_F^2$$
 (5.5)

Taking Eq.(5.5) into Eq.(5.1), we have

$$W^{(k+1)} = \arg\min_{W} F(W^{(k)}) + \langle \partial F(W^{(k)}), W - W^{(k)} \rangle + \frac{\mu_k}{2} ||W - W^{(k)}||_F^2 + \lambda ||W||_*$$

The above problem admits a closed form solution by using SVD thresholding operator to $M = W^{(k)} - \frac{1}{\mu_k} \partial F(W^{(k)})$.

Experiments

To evaluate the proposed LRR model on the manifold of SPD matrices, we apply it to both clean and corrupted image datasets for image classification and image segmentation.

Table: Input Feature Comparisons among Baselines

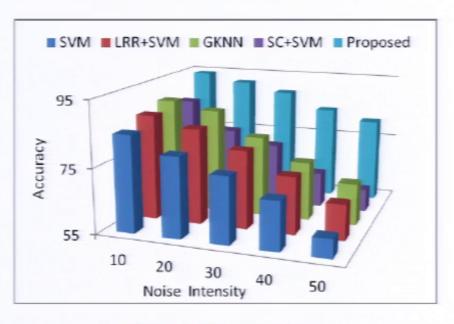
Baseline Methods	Input Features for Classifcation/Clustering		
SVM/Ncut	Vectoried SPD matrices		
LRR+SVM/Ncut	Low rank features on the Euclidean space		
GKNN/RNcut	Original SPD matrix features		
SC+SVM/our new method	Low rank features on the Manifold of SPD matrices		

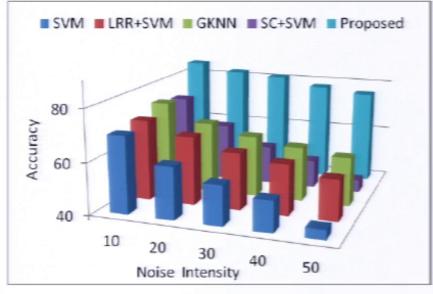
Performance for Image Classification

Table: Classification Accuracy comparisons on Clean data sets

	Brodatz		IDIAP		
Class	16	32	5	10	15
SVM	93.36	88.67	76.54	72.75	68.56
LRR+SVM	95.08	90.99	80.17	75.81	72.89
GKNN	95.7	92.11	82.69	77.32	80.36
SC+SVM	99.37	95.43	87.71	82.69	83.78
Proposed	99.89	97.12	90.38	87.78	87.33

Noise Robustness of the Proposed Model





(a) 16-class Brodatz

(b) 15-class IDIAP

Figure: Classification Accuracy comparisons on Noisy data sets

Performance for Image Segmentation

Table: Image segmentation accuracy on the Automatic Photo Pop-up dataset

_				
Dataset	Ncut	LRR+Ncut	RNcut	Proposed
beach04	76.75	80.55	81.67	84.96
roads03	78.66	82.51	83.68	87.99
beach01	80.56	84.33	86.56	89.34
build05	75.44	78.34	80.54	83.55

Conclusions

- We propose a novel LRR model on the manifold of SPD matrices, in which we exploit the intrinsic property of SPD matrices manifold in the Riemannian geometric context.
- Compared with the existing Euclidean LRR algorithms, the loss of the global linear structure is compensated by the local linear structures given by the tangent spaces of the manifold.
- Further, we derive a easily solvable optimization problem, which incorporates the structured embedding mapping into the LRR model.
- Our experiments demonstrate that our proposed method is efficient and robust to the noise, and produces superior results compared to other state-of-art methods for classification and segmentation applications on several computer vision datasets.

Thanks! Questions?