Near-separable Non-negative Matrix Factorization with ℓ_1 - and Bregman Loss Functions

Abhishek Kumar^a and Vikas Sindhwani^v

Presented by Kush R. Varshney^k

^{a,k} IBM TJ Watson Research Center, Yorktown Heights, NY Google Research, NY

Separable NMF

Nonnegative Matrix Factorization (NMF)

• Given a matrix $X \ge 0$, express it as a product $WH(W, H \ge 0)$

- Minimize some distance measure between X and WH
- The inner dimension r is less than both m and n.
- Nonnegative rank: Smallest inner dimension r s.t. X = WH Rank(X) ≤ Rank₊(X) ≤ min(m, n)
- Non-unique: The factorization can be non-unique (even after ignoring permutation and scaling).

《日》《图》《意》《意》 意 りへび

Motivation: Decomposition into Parts

Figure : Sample images from Swimmer database (256 images, each of size 32×32)

H: basis / topics / dictionary, W: reconstruction coefficients

Nonnegative W implies additive combination of topics

Motivation: Decomposition into Parts

Figure : Sample images from Swimmer database (256 images, each of size 32×32)

(a) Basis obtained by SVD: $\min_{W,H} ||X - WH||_F$

Motivation: Decomposition into Parts

Figure : Sample images from Swimmer database (256 images, each of size 32 × 32)

- (a) Basis obtained by SVD: $\min_{W,H} ||X WH||_F$
- (b) "Topics" obtained by NMF: $\min_{W,H\geq 0} ||X-WH||_F$

イロ・ス原・ス語・ス語・ 夏 初久の

NP-hardness and Existing local search based approaches

 NMF problem is NP-hard (Vavasis, 2009) hence majority of work in the area has been on local-search methods.

$$\min_{W,H} L(X, WH) \qquad \text{s.t. } W \ge 0, \ H \ge 0$$

where $L(\cdot, \cdot)$ is a suitable loss function.

- 1. Randomly initialize nonnegative W and H
- 2. Fix one (block) of the variables and optimize for the others.
- 3. Cycle over the blocks (block coordinate descent).
- Guaranteed to converge to a stationary point, not necessarily to the global optimum.
- Several flavors exist to make the optimization fast.

Separable NMF

Separability assumption

Assumption: X is r-separable if identity matrix (I) is hidden in H

$$X = W_{m \times r} \underbrace{\left[I_{r \times r} H'_{r \times (n-r)}\right] P}_{H}$$
 for some permutation matrix P

- Columns of W appear as it is in X: W = X(:, A)
- Anchors: those columns of X that appear in W (given by the set A)
 - other columns are conic combination of anchors: X = X(:,A)H
- NMF problem reduces to finding the extreme rays of the cone containing columns of X

Separability assumption

Figure : Red points are anchors

NMF problem: find extreme rays of the pointed polyhedral cone

Near-separable (noisy) problem

Problem: Given

$$X = \underbrace{W[I_r H']P}_{\text{separable structure}} + \underbrace{N}_{\text{noise}}$$

identify the anchor columns of X.

- There are existing methods that model the noise by Frobenius-norm loss (Kumar et al, 2013), $\ell_{1,\infty}$ -norm loss (Bittorf et al, 2011). Some methods do not model the noise explicitly (Gillis and Vavasis 2014, Arora et al, 2013).
- We propose near-separable NMF with ℓ_1 and general Bregman loss functions to broaden its applicability.
 - $-\ell_1$ loss models the sparse noise case while Bregman loss functions can model noise from exponential family of distributions.

Separability: a reasonable assumption?

$$X \approx W_{m \times r} \underbrace{\left[I_{r \times r} H'_{r \times (n-r)}\right] P}_{H}$$
 for some permutation matrix P

- Several previous works have shown that separability is a reasonable assumption for Topic modeling (Arora et al, 2013, Kumar et al, 2013) and Hyperspectral unmixing (Gillis and Vavasis, 2014).
- We demonstrate that separable NMF with ℓ₁ loss performs well for video foreground-background separation and is a strong alternative to the popular Robust PCA approach.

Robust low rank approximation

• Robust low-rank approximation: models sparse noise X = L + S, S sparse

$$\min_{L} \|X - L\|_1 + \lambda \; \mathrm{rank}(L) \quad \mathsf{OR} \quad \min_{L} \|X - L\|_1, \; \; \mathsf{s.t.} \; \; \mathsf{rank}(L) \leq r$$

- Non-convex; believed to be NP-hard

Robust low nonnegative rank approximation

• Robust low nonnegative-rank approximation: models sparse noise X = L + S, S sparse

$$\min_{L\geq 0} ||X-L||_1$$
, s.t. $\operatorname{nn-rank}(L) \leq r$

- also NP-hard

Making these robust approximations tractable

- Both low-rank and low nonnegative-rank approximations can be used to do foreground-background separation
 - background subtraction in video
 - background topics from document-specific keywords in text
- Robust low-rank approx.: popular approach to make it tractable is convex relaxation

$$\min_{L} ||X - L||_1 + \lambda ||L||_{\star}$$

- well studied in the literature under Robust PCA
- Robust low-nonnegative rank approx.: We use separability assumption to make it tractable.

$$\min_{W,H>0} ||X - WH||_1$$
, s.t. $H = [I_{r \times r} H'_{r \times (n-r)}]P$

– How does it compare with convexified Robust PCA on common applications?

Fast nonnegative conic hull

- Minimize $||X WH||_F^2$ s.t. $W \ge 0$, $H = \begin{bmatrix} I_{r \times r} \ H'_{r \times (n-r)} \end{bmatrix} P \ge 0$ for some permutation matrix P
- Based on characterization of extreme points/rays from Clarkson, 1994 and Dula et al., 1998

To expand the current cone:

- Step 1: Project external points to the cone and find normals to the faces
- Step 2: Pick a face and rotate until it hits the "last" point
- Step 3: Add this point as a new extreme ray

Nonnegative Conical Hull with ℓ_1 loss

• We extend the Conical hull approach of (Kumar et al, 2013) to ℓ_1 and Bregman loss functions.

To expand the current cone:

- Step 1: Project external points to the current cone
 - $-\ell_1$ projections are not normal to the faces
- Step 2: Pick a new extreme ray and expand the cone

Nonnegative Conical Hull with ℓ_1 loss

Robust XRAY algorithm:

- 0. Start: $A = [], D \leftarrow X$
- 1. Selection step: select a column using the following criteria

$$j^* = \underset{j}{\operatorname{arg\,max}} \left(\frac{D_i^T X_j}{p^T X_j} \right), \qquad A \leftarrow A \cup j^*$$

2. Project on the cone: Solve multivariate nonnegative least absolute deviation

$$H^* = \arg\min_{H>0} ||X - X(:, A)H||_1$$
 (ADMM)

$$D_{ij} \leftarrow \begin{cases} sign(X - X(:, A)H^*)_{ij}, & \text{if } (X - X(:, A)H^*)_{ij} \neq 0 \\ 0, & \text{if } (X - X(:, A)H^*)_{ij} = 0 \end{cases}$$

- 3. Goto step 1 until |A| = r
 - Provably solves the separable problem.
 - Several possibilities in selecting the exterior point.

Nonnegative Conical Hull with Bregman Divergences

• A strictly convex function: $\phi: \mathbb{R}^{m \times n} \mapsto \mathbb{R}$

Continuous derivative: $\psi : \mathbb{R}^{m \times n} \mapsto \mathbb{R}^{m \times n}$

Bregman divergence is defined as

$$D_{\phi}(X,Y) = \phi(X) - \phi(Y) - tr(\psi(Y)^{T}(X-Y)) \ge 0$$

 Selection criteria can be modified to recover anchor columns with Bregman divergences.

$$\min_{W,H>0} D_{\phi}(X,WH), \text{ s.t. } H = [I_{r\times r} H'_{r\times (n-r)}]P$$

Special case: $\phi(X) = ||X||_F^2 \Longrightarrow D_{\phi}(X, WH) = ||X - WH||_F^2$

Advantages

- Easy model selection: Previous solutions are contained in the current solution
 - can incrementally add new topics until some criterion is met
- Scalable implementation
 - easy to parallelize
 - compares favorably with Robust PCA in terms of speed

Synthetic data (recovery of anchors): Sparse noise case

Generative model: X = WH + N

 $W \in \mathbb{R}_+^{200 imes 20} \sim \mathsf{Uniform\ between\ 0\ and\ 1}$

 $H = [I_{20} \ H'] \in \mathbb{R}^{20 \times 210}_+, \ H' \sim \text{Dirichlet}$

 $N \sim \text{Laplace}(0,\delta), N \leftarrow \max(N,0)$

Synthetic data (recovery of anchors): noise from exponential distribution

Generative model: $X_{ij} \sim \exp(\lambda W_{i:} H_{:j})$

 $W \in \mathbb{R}_+^{200 imes 20} \sim \mathsf{Uniform} \; \mathsf{between} \; \mathsf{0} \; \mathsf{and} \; \mathsf{1}$

 $H = [I_{20} \ H'] \in \mathbb{R}^{20 \times 210}_+, \ H' \sim \text{Dirichlet}$

Foreground-background separation in Video

 $X_{m \times n}$: each row is a video frame

Decompose X into (Low nonnegative-rank) + (Sparse) components using robust separable NMF.

Foreground-background separation in Video

 $X_{m \times n}$: each row is a video frame

Decompose X into (Low nonnegative-rank) + (Sparse) components using robust separable NMF.

Foreground-background separation in Video

Robust PCA: $\min_{L} ||X - L||_1 + \lambda ||L||_{\star}$ (inexact ALM)

Robust Separable NMF: $\min_{W,H\geq 0} ||X-WH||_1$, s.t. $H=[I_{r\times r}\ H'_{r\times (n-r)}]P$

Exemplar Selection

- Proposed XRAY algorithms can also be used to select exemplars or representatives

 video summarization, text corpus summarization
- Sparse Modeling Representative Selection (SMRS): Proposed in [Elhamifar et al, CVPR 2012]

$$\min_{C} \lambda \|C\|_{1,q} + \frac{1}{2} \|X - XC\|_{F}^{2}$$
 s.t. $1^{T}C = 1$

Summary

- Separability assumption makes the NMF problem tractable
 - reasonable assumption in applications like topic modeling, hyperspectral unmixing, etc.
- We develop a scalable family of algorithms for solving near-separable NMF problem under ℓ_1 and Bregman loss functions
 - incremental build-up of solution
 - outperforms competing approaches in performance and speed for video foreground-background separation and exemplar selection