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Nonnegative Matrix Factorization (NMF)

@ Given a matrix X > 0, express it as a product WH (W. H > 0)

n r n

r H

— Minimize some distance measure between X and WH
— The inner dimension r is less than both m and n.

@ Nonnegative rank: Smallest inner dimension r s.t. X = WH

Rank(X) < Rank.(X) < min(m. n)

@ Non-unique: The factorization can be non-unique (even after ignoring
permutation and scaling).
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Motivation: Decomposition into Parts
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Figure : Sample images from Swimmer database (256 images, each of size 32 x 32)
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H: basis / topics / dictionary, W: reconstruction coefficients

@ Nonnegative W implies additive combination of topics
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Figure : Sample images from Swimmer database (256 images, each of size 32 x 32)
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SVD:

Basis
minw g||X — WHI||g

obtained by

(a)
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Motivation: Decomposition into Parts
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(2a) Basis obtained by SVD: (b) “Topics” obtained by NMF:

minW_H X — VVH\F minyv_H‘Z()HX == WHHF

Separable NMF




NP-hardness and Existing local search based approaches

@ NMF problem is NP-hard (Vavasis, 2009) hence majority of work in the area
has been on local-search methods.

min L(X.WH) st. W>0, H>0
W.H

where L(-.-) is a suitable loss function.
1. Randomly initialize nonnegative W and H
2. Fix one (block) of the variables and optimize for the others.
3. Cycle over the blocks (block coordinate descent).

@ Guaranteed to converge to a stationary point, not necessarily to the global
optimum.

@ Several flavors exist to make the optimization fast.
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Separability assumption

@ Assumption: X is r-separable if identity matrix (/) is hidden in H

N W [I,x, ;X(n_,)] P  for some permutation matrix P
w
H

— Columns of W appear asitisin X: W = X(:. A)

@ Anchors: those columns of X that appear in W (given by the set A)

— other columns are conic combination of anchors: X = X(:. A)H

@ NMF problem reduces to finding the extreme rays of the cone containing
columns of X




Separability assumption

Figure : Red points are anchors

NMF problem: find extreme rays of the pointed polyhedral cone




Near-separable (noisy) problem

@ Problem: Given

X = W[Ir H’]P + N
separable structure MNOIS€

identify the anchor columns of X.

@ There are existing methods that model the noise by Frobenius-norm loss
(Kumar et al, 2013), /1 ..-norm loss (Bittorf et al, 2011). Some methods do
not model the noise explicitly (Gillis and Vavasis 2014, Arora et al, 2013).

@ We propose near-separable NMF with #; and general Bregman loss functions
to broaden its applicability.
— (1- loss models the sparse noise case while Bregman loss functions can
model noise from exponential family of distributions.




Separability: a reasonable assumption?

X e W [I,x, ;x(n_,)] P  for some permutation matrix P

ey
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@ Several previous works have shown that separability is a reasonable
assumption for Topic modeling (Arora et al, 2013, Kumar et al, 2013) and
Hyperspectral unmixing (Gillis and Vavasis, 2014).

@ We demonstrate that separable NMF with ¢; loss performs well for video
foreground-background separation and is a strong alternative to the popular
Robust PCA approach.




Robust low rank approximation

@ Robust low-rank approximation: models sparse noise X = L+ S, S sparse

mLin||X — L||; + A rank(L) OR mLin||X — L||;, s.t. rank(L) <r

— Non-convex: believed to be NP-hard




Robust low nonnegative rank approximation

@ Robust low nonnegative-rank approximation: models sparse noise
X=L+S. S sparse

. =, 5
anZ|2||X L||;. st. nn-rank(L) <r

— also NP-hard




Making these robust approximations tractable

@ Both low-rank and low nonnegative-rank approximations can be used to do
foreground-background separation

— background subtraction in video

— background topics from document-specific keywords in text

@ Robust low-rank approx.: popular approach to make it tractable is convex

relaxation
ming || X — L||1 + A||L]|«

— well studied in the literature under Robust PCA

@ Robust low-nonnegative rank approx.: We use separability assumption to
make it tractable.

. /
i IX = WHI st H= [l Hago 1P

— How does it compare with convexified Robust PCA on common
applications?




Fast nonnegative conic hull [Kumar et al, ICML 2013]

@ Minimize | X — WH||% s.t.
W>0.H= [I,x, E ] P >0 for some permutation matrix P

rx(n—r)

@ Based on characterization of extreme points/rays from Clarkson, 1994 and
Dula et al., 1998

To expand the current cone:
@ Step 1: Project external points to the cone and find normals to the faces
@ Step 2: Pick a face and rotate until it hits the “last” point
@ Step 3: Add this point as a new extreme ray




Nonnegative Conical Hull with #; loss

@ We extend the Conical hull approach of (Kumar et al, 2013) to ¢; and
Bregman loss functions.

To expand the current cone:
@ Step 1: Project external points to the current cone

— (1 projections are not normal to the faces




Nonnegative Conical Hull with /7 loss

Robust XRAY algorithm:
0. Start: A=[]. D+ X

1. Selection step: select a column using the following criteria

DT X;
j*=argmax< L J). A+—AUS*

J pT X;
2. Project on the cone: Solve multivariate nonnegative least absolute deviation

H* = arg ming~ || X — X(:. A)H||1 (ADMM)

Djj + {sign(X — X(:. A)H");, if (X —X(:,A)H*); #0

if (X — X(:.A)H*); =0

3. Goto step 1 until |A| =r

@ Provably solves the separable problem.

@ Several possibilities in selecting the exterior point.




Nonnegative Conical Hull with Bregman Divergences

@ A strictly convex function: o : R™" — R
Continuous derivative: v : RM*1 5 RMXN

Bregman divergence is defined as

Ds(X.Y) = &(X) —o(Y) — tr(v(Y) (X = Y)) > 0

@ Selection criteria can be modified to recover anchor columns with Bregman

divergences.
' . ’
min_ Do(X. WH). st. H =[x, Hix(op]P
Special case: o(X) = || X||z = Dy(X. WH) = || X — WH||z

__,_r—‘_'_ ,' " 4 j ; - 'r,‘v' :g ..,-




Advantages

@ Easy model selection: Previous solutions are contained in the current solution

— can incrementally add new topics until some criterion is met

@ Scalable implementation

— easy to parallelize

— compares favorably with Robust PCA in terms of speed




Synthetic data (recovery of anchors): Sparse noise case

Generative model: X = WH - N

W c R_2f_00x20 ~ Uniform between 0 and 1

H = [ho H'] € R22*?0 K’ ~ Dirichlet

N ~ Laplace(0,0), N «— max(N.0)

.

(=]
w0
-

e
[

e
“l

o
(=]

(=]
n
T

(=]
e
L)

e
[

= XRAY-robust (max)
we. XRAY—frob (max)
= Hottopbox

= Gillis & Vavasis

©
()

e
—.

Fraction of anchors correctly recovered

)

05 1 15

©

Noise level




Synthetic data (recovery of anchors): noise from
exponential distribution

Generative model: Xj ~ exp(AW;.H.})

W < R?‘{_OOXZO ~ Uniform between 0 and 1

H = [ho H'] € R?***° H’ ~ Dirichlet
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Foreground-background separation in Video

Xmxn: €ach row is a video frame

Decompose X into (Low nonnegative-rank) + (Sparse) components using robust
separable NMF.




Foreground-background separation in Video

Xmxn: €ach row is a video frame

Decompose X into (Low nonnegative-rank) + (Sparse) components using robust

separable NMF.




Foreground-background separation in Video

Robust PCA: ming || X — L|[; + A||L]|. (inexact ALM)
Robust Separable NMF: minw g>ol|X — WH||1. st. H=[lx, H )]P

rx(n—r
ROC curve (Restaurant) ROC curve (Airport Hall)
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Exemplar Selection

@ Proposed XRrAY algorithms can also be used to select exemplars or representatives
— video summarization, text corpus summarization

@ Sparse Modeling Representative Selection (SMRS): Proposed in [Elhamifar et al,
CVPR 2012]
minc A||Cll1.q + 3IX — XC||f st 17C=1

Reuters (£ training samples: 3645, # classes: 10)
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Summary

@ Separability assumption makes the NMF problem tractable

— reasonable assumption in applications like topic modeling, hyperspectral
unmixing, etc.

@ We develop a scalable family of algorithms for solving near-separable NMF
problem under ¢; and Bregman loss functions

— incremental build-up of solution

— outperforms competing approaches in performance and speed for video
foreground-background separation and exemplar selection




