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Introduction ... i

Samsung

SPARRV

SIGNATURE APPS
services built for TV

Nowadays, smart TV is very prevalent...
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g8« Watching group refers to users who have |
& similar preferences for TV programsin
front of a television.

Television

\

Watching Groups S 3



Challenges of TV Recommendation .

1. How to infer the preference for different
watching group from such a large number of
iIndividual watching records?

2. How to handle the implicit feedbacks of users,
e.g. watching time ?
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Data ..

1. Each watching record includes:
* Television ID
* Program ID

* Time Information
For example :

2 ba000000000018817163 740 2014-03-12T700:00:00.000Z21 800

2. Each TV program includes:
* Title
* Two types of genres: first level genre and sub-genre
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Data WY/
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1. Each watching record includes:
* Television ID
* Program ID

* Time Information

230,196 4,289 14,159,678

2. Each TV program includes:
* Title
* Two types of genres: first level genre and sub-genre
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Methods ol

Basic Framework

Step 1: Discover Watching Groups

Step 2: Learn Preference of Television
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Methods — Discovery of Watching Groups

Television Clustering =) Estimating Watching Groups

(K-means) m4 (Markov Clustering)
Feature: ‘Feature: |
* Watching frequency of TV * First-level genre

program * Sub-genre i
'+ Watching time in a day i
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Methods — Discovery of Watching Groups

In each TV group, televisions have similar
watching groups.
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Methods — Discovery of Watching Groups

Television Clustering [j Estimating Watching Groups
(K-means) (Markov Clustering)

Feature: Feature
* Watching frequency of TV * First-level genre

program * Sub-genre
'» Watching time in a day
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* Watching time in a day
* Week day or weekend

®
Methods — Discovery of Watching Groups (“]\\7{[ -
Television Clustering Estimating Watching Groups
(K-means) (Markov Clustering)
'Feature: Feature:
' * Watching frequency of TV * First-level genre
program i e Sub-genre
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Methods — Discovery of Watching Groups (“]\\7{[ .
TV Group 1 TV Group 2
TV Groups

The hidden watching
group number
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Methods — mPMF -

Basic frame work

Step 1: Discover Watching Groups

Step 2: Learn Preference of Television

Mixture Probabilistic Matrix Factorization (mPMF)
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Methods — mPMF N4
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Assumption: The preferences of a television for TV programs could be
decomposed into a mixture preference of the hidden watching groups.

Preferences of
Watching Groups

Preference of TV —




Methods — mPMF Nz

Given: The learned number of watching groups
for each television group

Program K

Program

V

R

Television

1
Television

_|

X

PN
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Given: The learned number of watching groups
for each television group

1. Draw television-specific latent factor from a
mixture of Gaussian distribution

2. The mixture number is the number of watching
groups
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Table 1: The generative process.

| ! =1.....N 1. For each pre »g‘rm’n 7, '
| % | Td—-lf _ a Draw V; ~ N (V; | 0, A I).
| W - o 2. For each group I,
| ‘ 1 I a. For each television 1,
| { y - \ 1 v, Wi - Draw m;; ~ Dirichlet(a).
{ [ b ]\ - Pick a Gaussian Z;; ~ discrete(m;;).
]“)"j | _ - Draw T;; ~ N (T;; | Hiz,. \, ).
o 'S b. For each typical user k,
| =1..L - Draw u;p ~ N (up | 0, (BoAj )~ 1).

Draw A ~ W(Aix | Wo, vo).
3. For each non-missing entry (1, 1, j),

a. Draw Ry;; ~ N (Ryi; | Tk Vi, A~ ).

Figure 1: The Graphical Model of mPMF.

n

51112015 22




N/

- F 4

Methods — mPMF UNC CHARLOTTE
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Alternating Least Square for the parameter estimation.
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Experiments -

* Show an example of clustering

* Evaluate the proposed method’s performance
 Prediction Accuracy
« Ranking Accuracy
« Top-K Recommendation

* Compare different data conversion methods
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Experiments — An Example of clustering
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ID

Name

0-504

GcO0-604

The Chew

General Hospital

J e ~~[r.if'i‘."

ABC World News
With Diane Sawvyer

Wheel of Fo

reune

House Hunters In-
ternational
House Hunters In-

ternational
House Hunters

Genre
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X > <4 v
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+ = > 4 v
3081 2083 3208
® o o
T2 700502 602 43 Al
- ) | > < v
801 43 162 s
= > < - \ 4
200 43 182 —
1 > < v
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P g P PG W W IR VIR
- =~ an » - _ - -

Time

-504
GCOO-604

Talk-Show
Drama
Game-Show
News
Game-Show
Reality-TV
Reality-TV

Documentary

corresponding program names and main genres.

An example of clustering: Left is the clustering result, and Right is the
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Experiments — Prediction Accuracy

UNC CHARLOTTE
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Experiments — Ranking Accuracy —

Kendall Tau
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Dimension of Latent Factors

Figure 4: Kendall Tau
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Figure 5: nDCG
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Figure 6: CD (D = 10)
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Figure 7: CD (D = 30)
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Experiments — Top-K Recommendation

| Precision@5 Recall@5 [ Precision@10 ] Recall@10 [ MAP

10D Latent Features
mPMF 0.0432 0.0411 0.0277 0.0527 0.0377
mPMF@Random 0.0430 0.0411 0.0284 0.0540 0.03619
mPMFal 0.04105 0.0391 0.0259 0.0494 0.0342
mPMFa3 0.0429 0.0409 0.0281 0.0534 0.0354
PMF 0.0320 0.0304 0.0211 0.0402 0.0276

30D Latent Features
mPMF 0.0517 0.0493 0.0322 0.0613 0.0469
mPMF@Random 0.0529 0.0503 0.0326 0.0620 0.0452
mPMFal 0.0488 0.0464 0.0296 0.0564 0.0417
mPMFa3 0.0516 0.0491 0.0318 0.0606 0.0439
PMF 0.0392 0.0373 0.0242 0.0461 0.0359

60D Latent Features
mPMF 0.0584 0.0556 0.0356 0.0679 0.0534
IIII).\-IF"RJtII'i“lll 0.0581 0.0553 0.0352 0.0671 0.0497
mPNMFal 0.0534 0.0508 0.0316 0.0603 0.0457
mPMFa3 0.0562 0.0535 0.0338 0.0643 0.0479
PMF 0.0499 0.0475 0.0292 0.0556 0.0466

-
| =

Table 4: Performance Comparisons(Precision, Recall, MAP).




» Data Conversion Methods |+~ ==l
« Cumulative Ratios st o A |
- Frequency \
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Dimension of Latent Factors

Figure 8: DOA on mPMF
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Conclusion UNC CHARLOTTE

* Design a two-stage framework
= Employ clustering to discover the watching groups

= Develop probabilistic model to learn the preference
of television for TV program based on mixture
Gaussian distributions

* Evaluate the proposed model in real-world data
with various metrics
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