

Personalized TV Recommendation with Mixture Probabilistic Matrix Factorization

Huayu Li*, Hengshu Zhu[#], Yong Ge*, Yanjie Fu⁺, Yuan Ge⁻

*Computer Science Department, UNC Charlotte

#Baidu Research-Big Data Lab

+Rutgers University

-Anhui Polytechnic University

Outline

- Introduction
- Challenges of TV Recommendation
- Data
- Methods
- Experiments
- Conclusion

Introduction

Nowadays, smart TV is very prevalent...

Introduction

However, which TV program should we watch?

Outline

- Introduction
- Challenges of TV Recommendation
- Data
- Methods
- Experiments
- Conclusion

Television

Television

Watching Groups TV Program

Challenges of TV Recommendation

- 1. How to infer the preference for different watching group from such a large number of individual watching records?
- 2. How to handle the implicit feedbacks of users, e.g. watching time ?

Outline

- Introduction
- Challenges of TV Recommendation
- Data
- Methods
- Experiments
- Conclusion

Data

1. Each watching record includes:

- Television ID
- Program ID
- Time Information

For example:

TVID	Program ID	Watching Duration	Start Time	Total Time
2	ba000000000018817163	740	2014-03-12T00:00:00.000Z1	800

2. Each TV program includes:

- Title
- Two types of genres: first level genre and sub-genre

Data

1. Each watching record includes:

- Television ID
- Program ID
- Time Information

# Televisions	# TV Programs	# Watching Records
230,196	4,289	14,159,678

2. Each TV program includes:

- Title
- Two types of genres: first level genre and sub-genre

Outline

- Introduction
- Challenges of TV Recommendation
- Data
- Methods
- Experiments
- Conclusion

Methods

Basic Framework

Step 1: Discover Watching Groups

Step 2: Learn Preference of Television

Methods - Discovery of Watching Groups

Television Clustering (K-means)

Estimating Watching Groups (Markov Clustering)

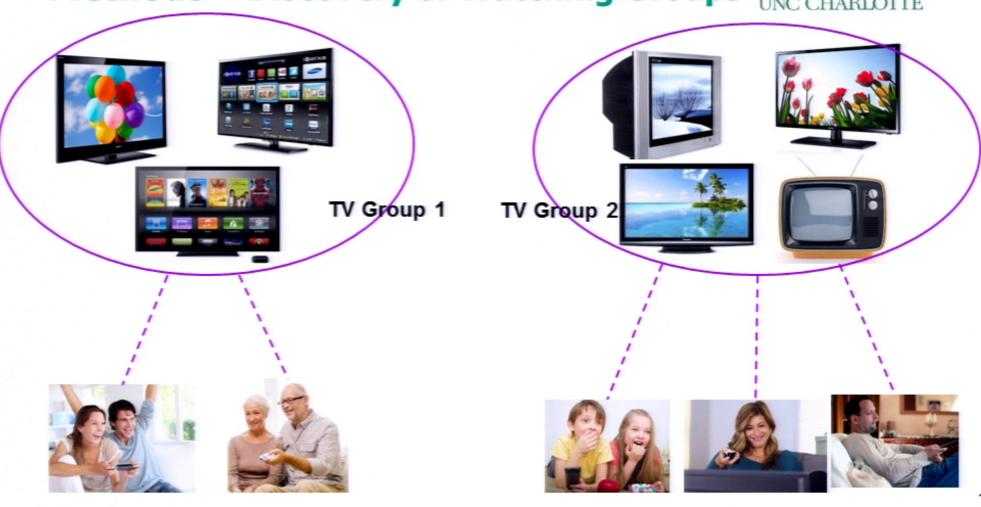
Feature:

 Watching frequency of TV program

Feature:

- First-level genre
- Sub-genre
- Watching time in a day
- Week day or weekend

Methods – Discovery of Watching Groups UNC CHARLOTTE



Methods – Discovery of Watching Groups UNC CHA

In each TV group, televisions have similar watching groups.

Methods - Discovery of Watching Groups UNC

Television Clustering (K-means)

Estimating Watching Groups (Markov Clustering)

Feature:

 Watching frequency of TV program

Feature:

- First-level genre
- Sub-genre
- Watching time in a day
- Week day or weekend

Methods - Discovery of Watching Groups UNG

Television Clustering (K-means)

Estimating Watching Groups (Markov Clustering)

Feature:

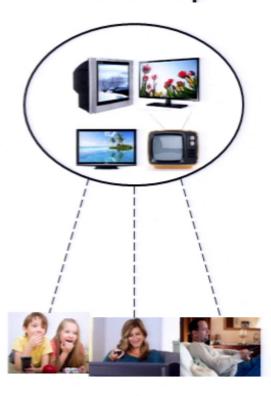
 Watching frequency of TV program

Feature:

- First-level genre
- Sub-genre
- Watching time in a day
- Week day or weekend

Methods – Discovery of Watching Groups UNCCH

TV Group 2



TV Groups

The hidden watching group number

Methods – mPMF

Basic frame work

Step 1: Discover Watching Groups

Step 2: Learn Preference of Television

Mixture Probabilistic Matrix Factorization (mPMF)

Methods – mPMF

Preferences of

Assumption: The preferences of a television for TV programs could be decomposed into a mixture preference of the hidden watching groups.

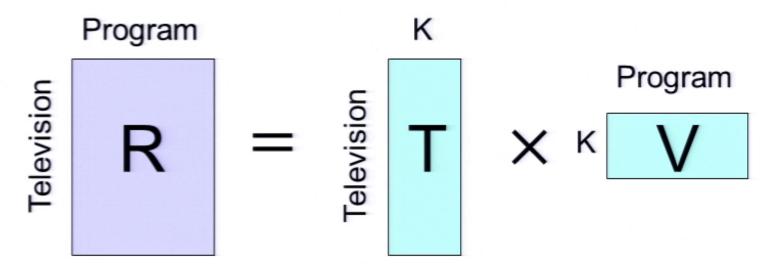
Preference of TV

Mixture

Watching Groups

Methods – mPMF

Given: The learned number of watching groups for each television group



Methods - mPMF

Given: The learned number of watching groups for each television group

- Draw television-specific latent factor from a mixture of Gaussian distribution
- The mixture number is the number of watching groups

Methods - mPMF

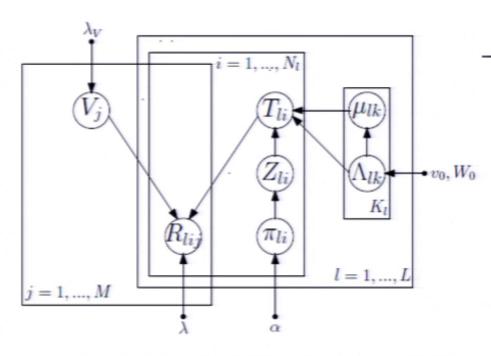


Figure 1: The Graphical Model of mPMF.

Table 1: The generative process.

- 1. For each program j,
 - a. Draw $V_j \sim \mathcal{N}(V_j \mid 0, \lambda_V^{-1}\mathbf{I})$.
- For each group l,
 - For each television i,
 - Draw $\pi_{li} \sim Dirichlet(\alpha)$.
 - Pick a Gaussian $Z_{li} \sim discrete(\pi_{li})$.
 - Draw $T_{li} \sim \mathcal{N}(T_{li} \mid \mu_{lz_{li}}, \Lambda_{lz_{li}}^{-1}).$
 - b. For each typical user k,
 - Draw $u_{lk} \sim \mathcal{N}(u_{lk} \mid 0, (\beta_0 \Lambda_{lk})^{-1}).$
 - Draw $\Lambda_{lk} \sim \mathcal{W}(\Lambda_{lk} \mid W_0, v_0)$.
- For each non-missing entry (l, i, j),
 - a. Draw $R_{lij} \sim \mathcal{N}(R_{lij} \mid T_{li}^T V_j, \lambda^{-1})$.

Methods - mPMF

$$\mathcal{L} = -\frac{\lambda}{2} \sum_{l,i,j} I_{lij} (R_{lij} - T_{li}^T V_j)^2 - \frac{\lambda_V}{2} \sum_j V_j^T V_j$$

$$+ \sum_{l,i} \ln \sum_k \pi_{lik} \mathcal{N}(T_{li} \mid \mu_{lk}, \Lambda_{lk}^{-1}) + \sum_{l,i,k} (\alpha_k - 1) \ln \pi_{lik}$$

$$+ \frac{1}{2} \sum_{l,k} \{ (v_0 - D) \ln |\Lambda_{lk}| - \beta_0 \mu_{lk} \Lambda_{lk} \mu_{lk}^T + Tr(W_0^{-1} \Lambda_{lk}) \}.$$

Alternating Least Square for the parameter estimation.

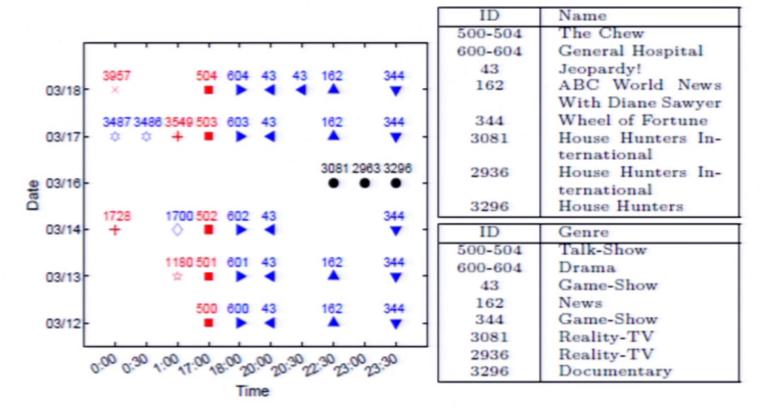
Outline

- Introduction
- Challenges of TV Recommendation
- Data
- Methods
- Experiments
- Conclusion

Experiments

- Show an example of clustering
- Evaluate the proposed method's performance
 - Prediction Accuracy
 - Ranking Accuracy
 - Top-K Recommendation
- Compare different data conversion methods

Experiments – An Example of clustering



An example of clustering: Left is the clustering result, and Right is the corresponding program names and main genres.

Experiments – Prediction Accuracy

Rating Conversion

 Cumulative ratio of watching time to the total time of a program played

Baselines

- PMF
- mPMF
 - ✓ Random # watching group
 - √ # watching group as 1
 - √ # watching group as 3

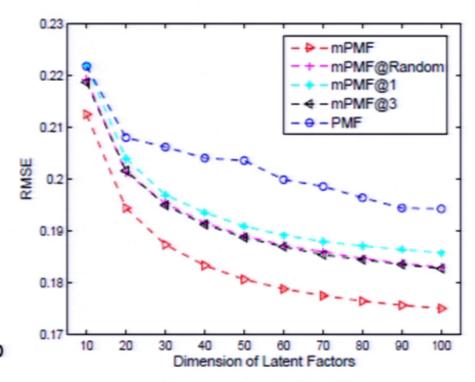


Figure 3: RMSE

Experiments – Ranking Accuracy

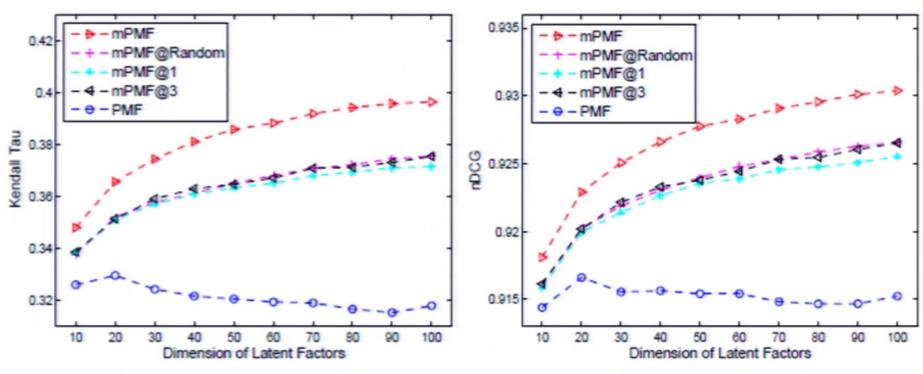
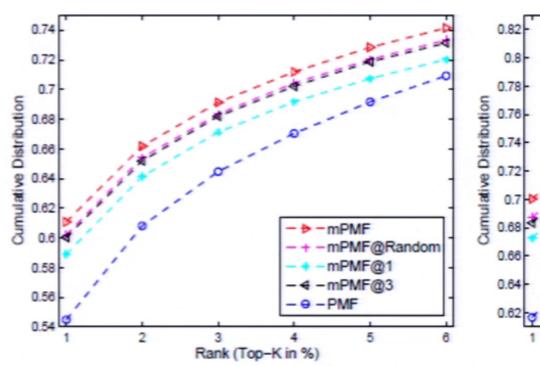


Figure 4: Kendall Tau

Figure 5: nDCG

Experiments – Top-K Recommendation



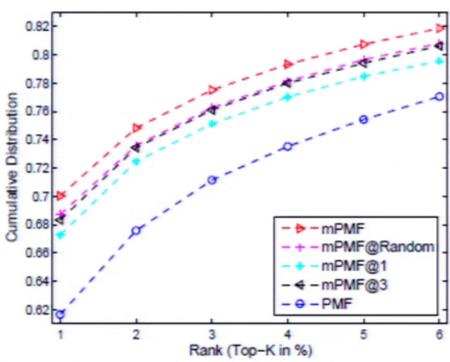


Figure 7: CD (D = 30)

Experiments – Top-K Recommendation

	Precision@5	Recall@5	Precision@10	Recall@10	MAP			
10D Latent Features								
mPMF	0.0432	0.0411	0.0277	0.0527	0.0377			
mPMF@Random	0.0430	0.0411	0.0284	0.0540	0.03619			
mPMF@1	0.04105	0.0391	0.0259	0.0494	0.0342			
mPMF@3	0.0429	0.0409	0.0281	0.0534	0.0354			
PMF	0.0320	0.0304	0.0211	0.0402	0.0276			
30D Latent Features								
mPMF	0.0517	0.0493	0.0322	0.0613	0.0469			
mPMF@Random	0.0529	0.0503	0.0326	0.0620	0.0452			
mPMF@1	0.0488	0.0464	0.0296	0.0564	0.0417			
mPMF@3	0.0516	0.0491	0.0318	0.0606	0.0439			
PMF	0.0392	0.0373	0.0242	0.0461	0.0359			
60D Latent Features								
mPMF	0.0584	0.0556	0.0356	0.0679	0.0534			
mPMF@Random	0.0581	0.0553	0.0352	0.0671	0.0497			
mPMF@1	0.0534	0.0508	0.0316	0.0603	0.0457			
mPMF@3	0.0562	0.0535	0.0338	0.0643	0.0479			
PMF	0.0499	0.0475	0.0292	0.0556	0.0466			

Table 4: Performance Comparisons(Precision, Recall, MAP).

Experiments – Data Conversion Methods

- Data Conversion Methods
 - Cumulative Ratios
 - Frequency
 - Binary
 - Confidence Level

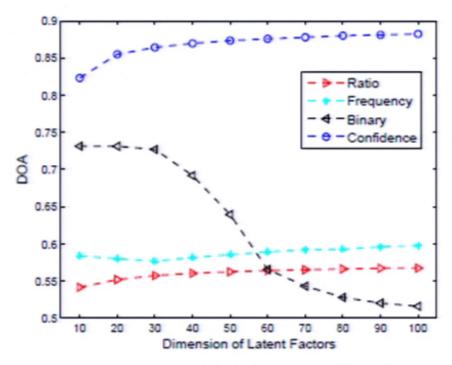


Figure 8: DOA on mPMF

Conclusion

- Design a two-stage framework
 - Employ clustering to discover the watching groups
 - Develop probabilistic model to learn the preference of television for TV program based on mixture Gaussian distributions
- Evaluate the proposed model in real-world data with various metrics