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Background

» Link prediction: Fill possible 1s into (sparse) symmetric
adjacency matrix A € {0,1}V*N of a graph (we assume it’s
undirected in our work)

» Examples:

» Recommending friends in Facebook, Twitter etc.
» Suggesting collaboration in coauthor networks
» Recommendation systems in general

» Matrix Factorization (MF):

minz L(Aij, g( Wé Wi+ bii+ b)) (1)
IJ

> Wé is the jth row of W5, W ; is the ith column of W,

» L and g are loss function and link function respectively.

» We take g(x) = (1 + exp(—x))™!, L as cross entropy in this
work.




Background Cont'd

» Autoencoder (AE): learning representations by reconstructing
input x € RV

f(Wlx -+ b1)
g(Wah + by) 2) ®

h
X

with Wy € REXN b, € RK W, € RN*K b, € RN. The
parameters are learned by solving the following optimization
problem:

min Z L(xi, Xi; Wi, b1, Wa, by) (3)

» Applying to link prediction, we take x; = A;, this is "bag of
neighbors” representation analogous to bag of words.

» h € RK is the learned representation for input x, should
contain community information useful for link prediction.




Relating MF to AE

» Define ¢; € RN as the one hot encoding of node i, rewrite MF
(omitting the biases) as:

min Y L(A;, g(Wah;))
i (4)
s.t. h; = WA9;
» And AE as:
min )  L(A;,g(Wah))
Sl = f(WlA,)

» Both MF and AE are reconstructing A with (almost) the same
architecture: learn a representation h; for node i.

» MF only looks at the identity of target node (§;); whereas AE
only looks at the neighboring nodes (A))

» They form two complimentary and sufficient views




Model: Joint Learning of MF and AE

min Y L(Ai,g(Wahyi+ b2)) +p Y L(Ai, g(Wahyi + bs))
i i (6)
S hl,i = f( W7 A; + bl), hy ; = f( W10; + b3)

» |dea: the two views should agree with each other

» Modify MF by introducing the same nonlinear activation
function f as used in AE. In our work, we use Rel u:
f(x) = max(0, x)

» Share the encoding the decoding matrix W; and W5, between
AE and MF

» Since they are both trained to reconstruct A, W1 and W5 are
forced to produce consistent representations from the two
VIEWS.




Model: Joint Learning of MF and AE

min Z L(A;, g(Wahy ;i + by)) + pz L(A;, g(Waha i + b)) (7)
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Figure 1: The architecture of the MF4-AE model, prediction is achieved
by averaging predictions from the two views




Training with Dropout (Regularized SGD)

» Originally designed to regularize deep neural nets, now is the
standard tool for deep learning.

» Works by randomly masking some neurons (input or latent
variables) to zero for each sample seen during the regular
Stochastic Gradient Descent.

» We show that this very technique can also help models as
shallow as MF and (single layer) AE

(a) Standard Neural Net (b) After applying dropout.




Second Order Approximation of Dropout on MF

= = ZE&-{L(Au,g( Wi (& @ Wa,))}
= ZL(AIg(%W2 Wl,i)) 5 % (Z(Wé)zgu(l . gIJ))(W1,)2 ¥

/\i

(8)

» & € {0,1}X is the random binary mask with each element an
iid Bernoulli draw with probability 0.5

> (W{)2 and (W ;)? are the element-wise square of the row and
column vectors, respectively

» g;j is short for g(% Wé Wi )




Dropout on MF Cont'd

0= ZE&{L(A,’J,g(Wé(Si © Wh,))}
~ SLA £ (W) + 5 (W (1 — )W

/\i

N

(9)

» The first term is equivalent to the objective function of MF,
except the activation is down scaled by a half

» The second term is a weighted /5 regularization of columns of
Wi

» The weight M\ is adaptive, note gij is a function of Wy, Wh; it
encourages confident prediction and small weights.

» The roles of Wi, W5 are symmetrical, the same interpretation
can be taken on the rows of W5




Second Order Approximation of Dropout on (linear) AE

» Dropout hidden units: similar to MF, replacing W; with
Wi A;. penalizing the linear combination of columns of W

» Dropout inputs (also known as Denoising Autoencoder):
denote W = WL W;

0= ZEg,.{L(A;,g(W(&- © Ai)))}

~ ZL(A;,g(%WA;)) £ % Z(Wf')2 Zg;.j(l — 8ij)(Ai)

NG g

Aj

(10)

» With W/ = W{ W1, feature dropout performs adaptive

weighted /> regularization on the linear combination of rows
of Wl

» Recall that dropout of hidden units penalize on the linear
combinations of columns of W4




Experiments

» For each of the six graphs, randomly select 10% edges for
training, and rest for testing. This yields six sparse graphs.

» Train all the evaluated models to convergence, we are
interested in their generalization abilities.

dataset N E D

DBLP 2,958 | 64,674 | 21.9
Facebook 2,277 | 148,546 | 65.2
Youtube 1,955 | 102,950 | 52.6
Twitter 2,477 | 107,895 | 43.6
Gplus 2,129 | 148,306 | 69.7
LiveJournal | 3,006 | 123,236 | 41.0

Table 1: Statistics of the datasets where N: number of nodes, E:
number of links, D: average degree.




Results

Model Facebook Twitter Youtube Gplus DBLP LiveJournal Average

MF+AE | 0.58057 0.46693 | 0.33132 0.41277 | 0.32462 | 0.29027 0.4011

AEd 0.54643 0.44229 0.31769 0.40085 0.29942 0.28659 0.3822

AE2 0.37748 0.2773 0.087839 0.17973 0.28308 0.1722 0.2296

MFd 0.46716 0.4041 0.23636 0.28956 0.29599 0.23958 0.3221 N
MF2 0.45216 0.39823 0.13842 0.24594 0.30735 0.21651 0.2931

MDM 0.54255 0.41304 0.23548 0.3149 0.30286 0.25415 0.3438

RW 0.53143 0.40647 0.15805 0.21685 0.27757 0.20524 0.2993

AA 0.47439 0.34576 0.13647 0.17523 0.23712 0.18247 0.2586

Table 2: Performance evaluated by Prec@10

» Qur proposed model trained with dropout achieved best result.

» AE and MF trained with dropout (AEd and MFd) work much
better than their /> regularized counterpart (AE2 and MF2)
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Figure 2: Visualization of the Facebook dataset. From top left to
bottom right: the full graph, the predictions of MFd, AEd, MF+AE,
respectively, the training graph, the prediction of MF2, AE2, MDM,
respectively.




Conclusion and Future Work

Conclusion:

» We have investigated the usage of AE to graph modeling, and
relate AE and MF by jointly training them together with
shared parameters.

» We have applied dropout to training both AE and MF, and
show that dropout act as an adaptive regularization

» We have conducted experiment on real world datasets and
successfully proved our hypothesis.

Discussion:

» Bayesian approach is another popular choice for
regularization, it would be interesting to investigate the
relationship of Bayesian methods with dropout, and the
possibility of enhancing both by combining them.

Thank You!




Second Order Approximation of Dropout on (linear) AE

» Dropout hidden units: similar to MF, replacing W; with
Wi A;. penalizing the linear combination of columns of Wj

» Dropout inputs (also known as Denoising Autoencoder):
denote W = WL W;
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» With W/ = Wé W1, feature dropout performs adaptive

weighted /> regularization on the linear combination of rows
of W1

» Recall that dropout of hidden units penalize on the linear
combinations of columns of W4




Dropout on MF Cont'd
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» The first term is equivalent to the objective function of MF,
except the activation is down scaled by a half

» The second term is a weighted /, regularization of columns of
Wi

» The weight N is adaptive, note g; ; is a function of Wy, Ws; it
encourages confident prediction and small weights.

» The roles of Wi, W5 are symmetrical, the same interpretation
can be taken on the rows of W5




Second Order Approximation of Dropout on MF

= = ZEa{L(Au,g(Wé(& © W)}
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» & € {0,1}X is the random binary mask with each element an
iid Bernoulli draw with probability 0.5

> (WZ)2 and (W, ;)? are the element-wise square of the row and
column vectors, respectively

» g;j is short for g(% Wé Wi i)




Model: Joint Learning of MF and AE

min Z L(A;, g(Wahy; + b)) + pz L(A;, g(Waha ;i + by)) (7)
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.

Ai
.

Figure 1: The architecture of the MF+AE model, prediction is achieved
by averaging predictions from the two views




Model: Joint Learning of MF and AE

min »  L(A;, g(Wahyi+ b2)) +p Y L(A;, g(Waho i + b))
i i (6)
Sk hl,,' = f( WlA,' -+ bl), h2,,‘ = f( W15,‘ + b3)

» |dea: the two views should agree with each other

» Modify MF by introducing the same nonlinear activation
function f as used in AE. In our work, we use Rel u:
f(x) = max(0, x)

» Share the encoding the decoding matrix W; and W, between
AE and MF

» Since they are both trained to reconstruct A, W1 and W5 are
forced to produce consistent representations from the two
VIEWS.




