Learning Complex Rare Categories with Dual Heterogeneity

Pei Yang¹, Jingrui He¹, Jia-Yu Pan²

¹Arizona State University, {pyang33, jingrui.he}@asu ²Google Inc., jiayu.pan@gmail.com

Outline

- Motivation
- Related Work
- The Proposed M²LID Model
- Performance Analysis
- Experiments
- Conclusion

Motivation - Insider Threat Detection

Problems and Challenges

Rarity

How to effectively detect and characterize the rare categories?

Dual heterogeneity

How to leverage both task and view heterogeneity to maximally boost the performance of rare category analysis?

Contributions

- An effective metric for boundary characterization of rare categories.
- A novel optimization framework M2LID for modeling the both rarity and dual heterogeneity.
- Performance analysis with respect to the convergence property, the error bound, and the algorithm complexity.
- Experimental results demonstrating the effectiveness of the proposed algorithm.

Outline

- Motivation
- Related Work
- The Proposed M²LID Model
- Performance Analysis
- Experiments
- Conclusion

Related Work - Rarity

- Imbalanced Classification:
 - Oversampling (Chawla et al., 2002)
 - Undersampling (Tomek, 1976)
 - One-class SVMs (Schölkopf et al., 2001)
 - Feature selection (Mladenic & Grobelnik, 1999)
 - Ensemble based methods (Zhou & Liu, 2006)
- Imbalanced Classification workshop:
 - AAAI'2000 workshop on Learning from Imbalanced Data Sets
 - ICML'2003 workshop on Learning from Imbalanced Data Sets
 - SIGKDD Explorations 2008 special issue on Learning from Imbalanced Data Sets

Related Work - Rarity

Outlier Detection:

- Survey (Chandola et al., 2009)
- Classification based (Barbara et al., 2001)
- Nearest neighbor based (Ramaswamy et al., 2000)
- Clustering based (Yu et al., 2002)
- Information-theoretic methods (He et al., 2005)
- Spectral based (Dutta et al., 2007)
- Statistical based (Aggarwal & Yu, 2001)

Related Work - Rarity

- Rare Category Analysis :
 - Local-density-differential sampling (He & Carbonell, 2007)
 - Active learning based sampling (Dasgupta & Hsu, 2008)
 - Hierarchical mean shift (Vatturi & Wong, 2009)
 - Gaussian mixture model (Pelleg & Moore, 2004)
 - Explore the compactness of minority with hyperball (He et al., 2010)

Related Work - Heterogeneous Learning

Multi-view Learning:

- Co-training (Blum & Mitchell, 1998),
- SVM-2K (Farquhar et al., 2005)
- Information-theoretic method (Sridharan & Kakade, 2008)
- Co-regularization (Sindhwani & Rosenberg, 2008)

Multi-task Learning:

- Feature learning based (Argyriou et al., 2007)
- Clustered-based (Zhou et al., 2011)
- Alternating structure optimization (Ando & Zhang, 2005)
- Detect outlier task (Gong et al., 2012)

Related Work - Heterogeneous Learning

- Dual (task/view) Heterogeneity:
 - Graph-based transductive method (He & Lawrence, 2011)
 - Co-regularization inductive method (Zhang & Huang, 2012)
 - Common structure learning
 (Jin et al., 2013)
 - Nonparametric bayes model (Yang & He, 2014)

Outline

- Motivation
- Related Work
- The Proposed *M*²*LID* Model
- Performance Analysis
- Experiments
- Conclusion

M²LID Model - Main Idea

- Introduce a boundary characterization metric to capture the sharp changes in density near the boundary of the rare categories in the feature space.
- Construct a graph-based model to leverage both task and view heterogeneity:
 - task-specific learners behave similarly on the features
 - view-based learners behave similarly on the examples
- M2LID models both rarity and dual heterogeneity in way of mutual benefit.

M²LID - Boundary Characterization

Reverse K Nearest Neighbor (RKNN) vs. KNN

The reverse k nearest neighbors of a given point is defined as (Xia et al., 2006):

$$RKNN(p_i) = \{p_j \mid p_i \in KNN(p_j)\}$$

M²LID - Boundary Characterization

- The nearest neighbor relationship is asymmetric:
- Use the different properties between KNN and RKNN to capture the sharp changes in density near the boundary of minority classes.
- If two instances have more common k-nearest neighbors, they will have more similar Hub values.
- If two instances have more common reverse k-nearest neighbors, they will have more similar Authority values.

M²LID - Boundary Characterization

Border-degree

Given an instance x, its border-degree is defined as:

$$b(x) = h(x) - \sigma a(x)$$

- The larger border-degree value an instance has, the more probably it is near the boundary.
- It is skewed around the border while flat in the regions far from border.

- Consistency on undirected KNN graphs Prediction:
 - smooth consistency among nearest neighbors
 - consistency with the label information
 - view consistency in terms of instances
 - task consistency in terms of features

$$J_{C}(f) = \sum_{i=1}^{T} \sum_{j=1}^{V} f_{ij}^{T} L_{f_{ij}} f_{ij} + \gamma \sum_{i=1}^{T} \sum_{j=1}^{V} \left\| f_{ij} - y_{ij} \right\|^{2}$$

$$+ \alpha \sum_{i=1}^{T} \sum_{j,k=1}^{V} \left\| f_{ij}^{I} - f_{ik}^{I} \right\|^{2} + \beta \sum_{i=1}^{V} \sum_{j,k=1}^{T} \left\| f_{ji}^{F} - f_{ki}^{F} \right\|^{2}$$

- Laplace matrix $L_{f_{ij}} = L(S) = D^{-\frac{1}{2}}(D-S)D^{-\frac{1}{2}}$

Hub (Kleinberg, 1999)

$$h^{t+1} = WW^T h^t$$

hubs

authorities

Consistency on directed KNN/RKNN graphs – Hub

$$J_{C}(h) = \sum_{i=1}^{T} \sum_{j=1}^{V} h_{ij}^{T} L_{h_{ij}} h_{ij} + \alpha \sum_{i=1}^{T} \sum_{j,k=1}^{V} \left\| h_{ij}^{I} - h_{ik}^{I} \right\|^{2} + \beta \sum_{i=1}^{V} \sum_{j,k=1}^{T} \left\| h_{ji}^{F} - h_{ki}^{F} \right\|^{2}$$

- Laplace matrix $L_{h_{ij}} = L(W_{ij}W_{ij}^T)$

Authority (Kleinberg, 1999)

$$a^{t+1} = W^T W a^t$$

hubs

authorities

Consistency on directed KNN/RKNN graphs – Authority

$$J_{C}(a) = \sum_{i=1}^{T} \sum_{j=1}^{V} a_{ij}^{T} L_{a_{ij}} a_{ij} + \alpha \sum_{i=1}^{T} \sum_{j,k=1}^{V} \left\| a_{ij}^{I} - a_{ik}^{I} \right\|^{2} + \beta \sum_{i=1}^{V} \sum_{j,k=1}^{T} \left\| a_{ji}^{F} - a_{ki}^{F} \right\|^{2}$$

- Laplace matrix $L_{a_{ij}} = L(W_{ij}^T W_{ij})$

- Consistency between prediction and border-degree
 - Assume y=1 for minority, y=-1 for majority;
 - Negative correlation:
 - The boundary instance have large border-degree and small absolute value of prediction.
 - The instance far away from boundary have small border-degree and large absolute value of prediction.

$$J_{P}(f,b) = \left[\left(\frac{f - \mu_{f}}{\sigma_{f}} \right)^{2} \right]^{T} \left(\frac{b - \mu_{b}}{\sigma_{b}} \right)^{2}$$

Overall objective

- Maximize the smoothness consistency objective for all of predictions, Hub, and Authority.
- Maximize the negative correlation between the prediction and the border-degree.

$$J(f,h,a) = J_C(f) + J_C(h) + J_C(a) + \lambda J_P(f,b)$$

The M²LID Framework

Decision function

- The smaller the border-degree is, the more confident the view-based classifier with its prediction.
- The final prediction takes the weighted sum of the predictions resulting from the view-based classifiers.

$$f_{i}^{*}(x) = \sum_{j=1}^{V} \left[1 - \frac{b_{ij}(x)}{\sum_{k=1}^{V} b_{ik}(x)} \right] f_{ij}(x)$$

Outline

- Motivation
- Related Work
- The Proposed M²LID Model
- Performance Analysis
- Experiments
- Conclusion

Performance Analysis

Convergence

The proposed M2LID algorithm converges to the local optimum.

$$J(f,h,a) = J_C(f) + J_C(h) + J_C(a) + \lambda J_P(f,b)$$

- Use block coordinate descent method to optimize.
- The objective is convex to each block {f, b, a}, e.g.,

$$J_{C}(f) = f^{T} H_{f} f - 2p^{T} f$$

 H_f is positive semi-definite

Performance Analysis

False Negative Error bound

Given the error bound,

$$P(y=1) = r$$

$$P(f_j = -1 | y = 1) = p_j$$

$$P(f_j = 1 | y = -1) = q_j$$

$$\rho \geq \frac{rE\left[p_{j}\left(1-\overline{b}_{j}\right)\right]}{rE\left[p_{j}\left(1-\overline{b}_{j}\right)\right]+\left(1-r\right)E\left[\left(1-\overline{b}_{j}\right)\left(1-q_{j}\right)\right]}$$

the probability of making a false negative error by M2LID can be bounded as follows,

$$P\left\{P\left[y=1 \mid f=-1\right] \ge \rho\right\} \le \exp\left(\frac{-2V\mu^2}{C}\right)$$

where

$$\mu = E\left[\left(1 - \overline{b}_{j}\right)\left(rp_{j}\left(1 - \rho\right) - \rho\left(1 - q_{j}\right)\left(1 - r\right)\right)\right]$$

Outline

- Motivation
- Related Work
- The Proposed M²LID Model
- Performance Analysis
- Experiments
- Conclusion

Experimental Results - Synthetic Datasets

- Visualize the boundary characterization in order to verify the effectiveness of the border-degree metric:
 - 2000 majority instances ~ Gaussian distribution.
 - 100 minority instances ~ uniform distribution.
 - Three 2-dimensional datasets: Circle, Half-moon, Plus.
 - The blue (green, yellow) stars representing the instances with top-10 (20, 40) largest border-degree values.

Experimental Results - Real Datasets

- ECML-PKDD 2006 Spam Email data
 - 3 different users (task)
 - 2500 emails per user
 - Views: TF-IDF features, topics obtained by PLSA
- Cora dataset
 - 37000 computer science research papers
 - Task refers to classify the papers in different subcategories
 - Views: TF-IDF features, topics obtained by PLSA
- Evaluation metric
 - F1-score on the minority

Comparison with Heterogeneous Learning

Comparison methods

- Multi-task multi-view method IteM2 (He & Lawrence, 2011)
- Multi-view method CoEM which is a variant of Cotraining (Blum & Mitchell, 1998)
- Multi-task method CASO (Chen et al., 2009)
- Multi-task method CMTL (Zhou et al., 2011)
- Multi-task method rMTFL (Gong et al., 2012)
- Multi-task method RMTL (Chen et al., 2011)

Comparison with Heterogeneous Learning

Figure 5: Error bar of different heterogeneous learning methods on Spam Email (average).

Figure 7: F-score of different heterogeneous learning methods on Cora NT-ML (average).

Figure 8: F-score of different heterogeneous learning methods on Cora DA-ML (average).

Comparison with Imbalanced Learning

Comparison methods

- Oversampling
- Undersampling
- SMOTE (Chawla et al., 2002)
- Ensemble methods for imbalanced data, including HardEnsemble and SoftEnsemble (Zhou & Liu, 2006).
- All implemented in online package CSNN (http://lamda.nju.edu.cn/Data.ashx).

Comparison with Imbalanced Learning

Figure 9: F-score of different imbalanced learning methods on Spam Email (average).

Figure 10: F-score of different imbalanced learning methods on Cora DA-NT (average).

Figure 11: F-score of different imbalanced learning methods on Cora NT-ML (average).

Figure 12: F-score of different imbalanced learning methods on Cora DA-ML (average).

Parameter Sensitivity

- K is the number of nearest neighbors.
- K = 20, 30, 40, 50, 60, 70, 80, 90.
- M2LID is robust over a wide range of k values.

Figure 13: F-score varies with k.

Convergence

M2LID converges fast, and become stable after 5 iterations.

Figure 14: F-score varies with iteration.

Outline

- Motivation
- Related Work
- The Proposed M²LID Model
- Performance Analysis
- Experiments
- Conclusion

Conclusions

- An effective metric named Border-degree for boundary characterization.
- A novel M2LID framework to learn from both rarity and heterogeneity in a way of mutual benefit.
- Algorithm analysis regarding convergence, error bound, and algorithm complexity of M2LID.
- Comparisons with both heterogeneity learning and imbalanced learning methods demonstrate the effectiveness of M2LID.

Thanks