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Motivation — Insider Threat Detection

~ View heterogeneity:
1) emails
2) website browsing history
_3) social network

Task heterogeneity:
the data collected from multiple
financial institutes.
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Problems and Challenges

= Rarity
How to effectively detect and characterize the rare
categories?

= Dual heterogeneity

How to leverage both task and view heterogeneity
to maximally boost the performance of rare

category analysis?
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Contributions

= An effective metric for boundary characterization of rare
categories.

= A novel optimization framework M2LID for modeling the
both rarity and dual heterogeneity.

= Performance analysis with respect to the convergence
property, the error bound, and the algorithm complexity.

= Experimental results demonstrating the effectiveness of
the proposed algorithm.
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Related Work - Rarity

= |mbalanced Classification:
— Oversampling (Chawla et al., 2002)
— Undersampling (Tomek, 1976)
— One-class SVMs (Scholkopf et al., 2001)
— Feature selection (Mladenic & Grobelnik, 1999)
— Ensemble based methods (Zhou & Liu, 2006)

= |mbalanced Classification workshop:
— AAAI'2000 workshop on Learning from Imbalanced Data Sets
— ICML’2003 workshop on Learning from Imbalanced Data Sets

— SIGKDD Explorations 2008 special issue on Learning from
Imbalanced Data Sets
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Related Work - Rarity

= Qutlier Detection:
— Survey (Chandola et al., 2009)
— Classification based (Barbara et al., 2001)
— Nearest neighbor based (Ramaswamy et al., 2000)
— Clustering based (Yu et al., 2002)
— Information-theoretic methods (He et al., 2005)
— Spectral based (Dutta et al., 2007)
— Statistical based (Aggarwal & Yu, 2001)
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Related Work - Rarity

= Rare Category Analysis :

— Local-density-differential sampling (He & Carbonell,
2007)

— Active learning based sampling (Dasgupta & Hsu,
2008)

— Hierarchical mean shift (Vatturi & Wong, 2009)
— Gaussian mixture model (Pelleg & Moore, 2004)

— Explore the compactness of minority with hyperball
(He et al., 2010)
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Related Work — Heterogeneous Learning

= Multi-view Learning:
— Co-training (Blum & Mitchell, 1998),
— SVM-2K (Farquhar et al., 2005)
— Information-theoretic method (Sridharan & Kakade, 2008)
— Co-regularization (Sindhwani & Rosenberg, 2008)

= Multi-task Learning:
— Feature learning based (Argyriou et al., 2007)
— Clustered-based (Zhou et al., 2011)
— Alternating structure optimization (Ando & Zhang, 2005)
— Detect outlier task (Gong et al., 2012)
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Related Work — Heterogeneous Learning

= Dual (task/view) Heterogeneity:

— Graph-based transductive method
(He & Lawrence, 2011)

— Co-regularization inductive method
(Zhang & Huang, 2012)

— Common structure learning
(Jin et al., 2013)

— Nonparametric bayes model
(Yang & He, 2014)
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MELID Model — Main Idea

= Introduce a boundary characterization metric to capture
the sharp changes in density near the boundary of the
rare categories in the feature space.

= Construct a graph-based model to leverage both task
and view heterogeneity:

— task-specific learners behave similarly on the features

— view-based learners behave similarly on the
examples

= M2LID models both rarity and dual heterogeneity in way

of mutual benefit.
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MFLID — Boundary Characterization

= Reverse K Nearest Neighbor (RKNN) vs. KNN

The reverse k nearest neighbors of a given point is defined
as (Xia et al., 20006):

RKNN (p,) ={pj | D € KNN(pj )}
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MFLID — Boundary Characterization

= The nearest neighbor relationship is asymmetric:

= Use the different properties between KNN and RKNN to
capture the sharp changes in density near the boundary of
minority classes.

= |f two instances have more common k-nearest neighbors,
they will have more similar Hub values.

= |f two instances have more common reverse k-nearest
neighbors, they will have more similar Authority values.
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MFLID - Boundary Characterization

= Border-degree
Given an instance x, its border-degree is defined as:

b(x)=h(x)-oa(x)

— The larger border-degree =} . -
value an instance has, the -
more probably it is near
the boundary.

— It is skewed around the
border while flat in the
regions far from border.

o
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MPLID - Objective

= Consistency on undirected KNN graphs - Prediction:
— smooth consistency among nearest neighbors
— consistency with the label information
— view consistency in terms of instances
— task consistency in terms of features
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— Laplace matrix L, = L(S)=D 2(D-S)D?
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MPLID - Objective

= Hub (Kleinberg, 1999)

ht+l - WWThI

hubs authorities

= Consistency on directed KNN/RKNN graphs — Hub

— iih%,, h, +az Z “ - “ + ,Bz Z ||hF —nr

i=l j=I i=1 j.k i=1 j.k

— Laplace matrix 1, =L(W,.J.I/V,.jlr )
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MPLID - Objective

= Authority (Kleinberg, 1999)

-~ - W[Wat

hubs authorities

= Consistency on directed KNN/RKNN graphs — Authority
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— Laplace matrix La,j =L(WUTW0)
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MPLID - Objective

= Consistency between prediction and border-degree
— Assume y=1 for minority, y=-1 for majority;
— Negative correlation:

* The boundary instance have large border-degree
and small absolute value of prediction.

* The instance far away from boundary have small
border-degree and large absolute value of
prediction.

— "_T :

Jo(f.b)= (f;ﬂf) (b;ﬂbj
f b
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MPLID - Objective

= Qverall objective

— Maximize the smoothness consistency objective for
all of predictions, Hub, and Authority.

— Maximize the negative correlation between the
prediction and the border-degree.

J(f.ha)=Jd.(f)+J-(h)+J.(a)+ 2], (f,b)
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The MPLID Framework

= Decision function

— The smaller the border-degree is, the more confident
the view-based classifier with its prediction.

— The final prediction takes the weighted sum of the
predictions resulting from the view-based classifiers.
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Performance Analysis

= Convergence

The proposed M2LID algorithm converges to the local
optimum.

J(f.ha)=Jd.(f)+J-(h)+J.(a)+AJ,(f,b)

» Use block coordinate descent method to optimize.
» The objective is convex to each block {f, b, a}, e.g.,

Je(f)=fH f-2pf

Q p Is positive semi-definD
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Performance Analysis ..

S~

= False Negative Error bound | :‘,:”?‘ 1)=p
Given the error bound, | p(:;f'_ :1,,\-:_1):@
ip(1-5)]

s rE[pj(1—1;_1)}+(1_r)E[(1_5’)(l_qj):I

the probability of making a false negative error by M2LID
can be bounded as follows,

P{P[yzl\ f=—1]2p}$exp(

u=E[(1-8,) (1w, (1-p)=p(1-,)(1-r))]

=2V u’
C
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Experimental Results — Synthetic Datasets

= Visualize the boundary

characterization in order to verify the

effectiveness of the border-degree metric:
— 2000 majority instances ~ Gaussian distribution.
— 100 minority instances ~ uniform distribution.

— Three 2-dimensiona

— The blue (green, yel
with top-10 (20, 40)

2

datasets: Circle, Half-moon, Plus.

ow) stars representing the instances
argest border-degree values.
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Experimental Results — Real Datasets

= ECML-PKDD 2006 Spam Email data
— 3 different users (task)
— 2500 emails per user
— Views: TF-IDF features, topics obtained by PLSA
= Cora dataset
— 37000 computer science research papers
— Task refers to classify the papers in different subcategories
— Views: TF-IDF features, topics obtained by PLSA

= Evaluation metric
— F1-score on the minority
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Comparison with Heterogeneous Learning

= Comparison methods

— Multi-task multi-view method IteM2 (He & Lawrence,
2011)

— Multi-view method CoEM which is a variant of Co-
training (Blum & Mitchell, 1998)

— Multi-task method CASO (Chen et al., 2009)
— Multi-task method CMTL (Zhou et al., 2011)
— Multi-task method rMTFL (Gong et al., 2012)
— Multi-task method RMTL (Chen et al., 2011)
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Comparison with Heterogeneous Learning
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Figure 5: Error bar of different heterogeneous learning Figure 6: F-score of different heterogeneous learning meth-
methods on Spam Email (average). ods on Cora DA-NT (average).
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Comparison with Imbalanced Learning

= Comparison methods
— Oversampling
— Undersampling
— SMOTE (Chawla et al., 2002)

— Ensemble methods for imbalanced data, including
HardEnsemble and SoftEnsemble (Zhou & Liu, 2006).

— All implemented in online package CSNN
(http://lamda.nju.edu.cn/Data.ashx).
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Comparison with Imbalanced Learning
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Figure 9: F-score of different imbalanced learning methods Figure 10: F-score of different imbalanced learning methods
on Spam Email (average). on Cora DA-NT (average).

Figure 11: F-score of different imbalanced learning methods Figure 12: F-score of different imbalanced learning methods
on Cora NT-ML (average). on Cora DA-ML (average).
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Parameter Sensitivity

33 =

K is the number of nearest neighbors.
K =20, 30, 40, 50, 60, 70, 80, 90.
M2LID is robust over a wide range of k values.

0v2 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
Ratio

Figure 13: F-score varies with k.
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Convergence

= M2LID converges fast, and become stable after 5
iterations.
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Figure 14: F-score varies with iteration.
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Conclusions
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An effective metric named Border-degree for boundary
characterization.

A novel M2LID framework to learn from both rarity and
heterogeneity in a way of mutual benefit.

Algorithm analysis regarding convergence, error bound,
and algorithm complexity of M2LID.

Comparisons with both heterogeneity learning and
Imbalanced learning methods demonstrate the
effectiveness of M2LID.
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