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Motivation: What are time series?
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Brownian particle earthquake events
in a potential landscape in Southern California



Motivation: Recurrence Networks

time series X[0,T] = {:CO, g ,:L‘T}

|

choose embedding in a metric space (€2, d)

|

construct recurrence network G

Idea: infer structure in the data from structure in GG




Motivation: Recurrence networks

structured data structure in G

| % modules




Reminder: From time series to networks

time series  xjo,7) = {%o0,..., 27}

|

choose embedding in a metric space (€2, d) te.g. rakens)

|

[ construct recurrence network G]

there are many methods to do this.



Constructing recurrence networks, method 2

Example of a time series:

3e

[S. Abe, N. Suzuki]



Constructing recurrence networks, method 2

L]
i) partition €2 . W

[S. Abe, N. Suzuki]



Constructing recurrence networks, method 2

lii) identify events in the same block.

7.8 X

[S. Abe, N. Suzuki]



Comparison

type

arrow of time

parameters

effort

metric tresholding discretization

G undirected G directed

represented by edge

not represented leavitions

treshold £ grid spacing h,

O (N?) O (N)




Outline

- Recurrence networks
- Module detection
- Method: Counting cycles

- Examples



Clustering directed networks

Clustering = m functions ¢i : V

standard: full partition

@:V - {0,1} W -

every node belongs to
exactly one module

assumes perfect structure
in the data



Clustering directed networks

Clustering = m functions ¢i : V

full partition fuzzy partition

G-V —>{0,1} gi: V —[0,1]
every node belongs to some nodes belong
exactly one module to several modules
assumes perfect structure reflects imperfect structure

in the data in the data



Clustering directed networks

Clustering = m functions ¢; : V

density based pattern based

[Delvenne,

[Newman et.al.] Lambiotte et.al.]



Clustering directed networks

density based
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Model inference

fuzzy partition should reflect uncertainty -> to quantify uncertainty,
we need to estimate a model of how the data was generated



Model inference

fuzzy partition should reflect uncertainty -> to quantify uncertainty,
we need to estimate a model of how the data was generated

time series “u symbol series

[Robinson et.al.]



Model inference

fuzzy partition should reflect uncertainty -> to quantify uncertainty,
we need to estimate a model of how the data was generated.

time series | symbol series

ML estimator of P°:

assumption: ,.\:';’]f
Fi; = T

1

sT } was generated
by a Markov chain N/ = N, & P reversible




Model inference

fuzzy partition should reflect uncertainty -> to quantify uncertainty,
we need to estimate a model of how the data was generated.

ML estimator of P:
NI
| LT st }was generated P, = —2

N T
by a Markov chain N;

assumption:

N;; = N; & P reversible

recurrence network G = graph(P)

— . P reversible & G undirected
V' = states of P

E={(j)eVxV:P,;>0}

1




Reversibility

- P reversible -> we can cluster based on the metastable sets of P.

C CV a-metastable & P (si+a €

clustering pipeline:

identify compute m

---) a-metastable sets -—-) committor functions

{(.7'1. - it .(.",,,} (1,(:(') — P(.‘s’T - (', S = l')

module cores fuzzy affiliation functions

[Sarich, Djurdjevac, Schiitte 2011]



Reversibility

identify compute m

e 4l O-Metastable sets QEEES @  committor functions

{C;, ..., Cm} (v) =P (s, € Ci|sg = v)

this only works if P is reversible.

Goal: construct reversible approximation

of P that keeps directional information.



Counting cycles
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[Qian, 2004)



Counting cycles
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[Qian, 2004)



Counting cycles
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[Qian, 2004)



Counting cycles
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[Qian, 2004)



Counting cycles
3 6 8

2e - - ?/.

[Qian, 2004)



Main result

NT
[im T converges a.s.

T'—ox

reversible transition matrix

1 € 7,
0 else.

membership function

P and P have the same invariant distribution.

computing P is O (N) (and thus as expensive as computing P).

[RB and N. Conrad, 2014)
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Example: Brownian motion in potential




Example: Brownian motion in potential
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Example 2: Earthquakes in Southern California
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earthquakes between
1952 and 2012
magnitude = 2.5

Q) = latitude - uniform grid

longitude coords h=0.1°




