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We are interested in a3 model which describes phase separation of a

binary mixtures of an amphiphilic molecules and solvent.

Water-lowng head Water-hating tad
”/“‘,_..( lipid pore

We consider the flow of interfaces under a generalized
free energy.

@ The Functionalized Cahn-Hilliard free energy,
@ The coexistence of bilayer & pore structures,

e Bifurcation of bilayer & pore morphologies.
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Very Brief Overview
A mphiphilic materials
Motivation

‘ Motivation - Szostak: Primitive cell division

Bilayers to Pores Pores to Micelles

PNAS 2011&2012 : Increasing background lipid
concentration derives the bilayer into fingering
(top), oxidation via illumination induces surface

charge which drives the pore into micelles (right).

Evolution of Network morphologies in the FCH




Cahn-Hilliard Energy
Free Energy Models Functionalized Cahn-Hilliard Energy

Coordinate System

Lntcal points o

The Cahn-Hilliard Energy

Cahn & Hilliard (1958) expended the free energy
E(u) = / f(u,=2|Vul? e2Au) dx
JQ

_ / f(1,0,0) + 22A(u)|Vul? + 2B(u)Au dx
JQ

Integrating by parts the B term yields the classical
Cahn-Hilliard free energy

E(u) = / iqu 2 + %W(u) dx
Jo 2 :

where, considering a binary mixture,
Q € RY bounded domain, d > 2, .
u: 2 — R is the volume fraction of one species, '_"“A__b_ | b

= controls the width of the boundary layer, T
W(u) : R — R is a tilted double-well potential with

minima at v = bx and W”(b+) > 0.
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From Cahn-Hilliard to Functionalized Cahn-Hilliard

For amphiphilic mixtures: Tuebner & Strey (1987), Gompper &
Schick (1990) added higher order terms >0

o 2
F(u) = / f(u,0,0)+22A(u)|Vul? +2°B(u)Au+c(u)(*Au)? dx
JQ

For the primitive A of A, so that VA = AV u, integrating by parts

and completing the square yields
A 2

F(u) = /QC(U)<:2AU—A;B>6+f(U-0~O)—(A_B) dx.

2§ 4C
Fixing the constants we have

F(u) = /Q L 2Au— wi(w))? + B(u) dx.

2
The Functlonallzed Cahn-Hilliard free _energy
F= —( =2Au— W'(u))? - (1;1— Vul* + m;aW/(u)) dx
Q _
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Free Energy Models Funcronalized Cahn-Hilliard Energy

Functionalized Cahn-Hilliard Vs. Cahn-Hilliard

Cahn-Hilliard to Functionalized Cahn-Hilliard: Zooming x500.

A porous membrane assembled from cholormethylated polysufone (CPSF)
with pyridine graphed via nucleophilic substitution (ammonium agent).
Energy Environ. Sci. 6 776 (2013).
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Cahn-Hilliard Energy
Free Energy Models Functionalized Cahn-Hilliard Energy
Coordinate System

Critical points of F

The Cahn-Hilliard Euler-Lagrange Equation

Fix an admissible interface I'., solve the Euler-Lagrange equation

—2A U+ W/ (U)=0inT,,.

Co-dim 2, *—p

Bilayer profile, Up(z), solves Pore profile, U,(z), solves
92U, = W'(Up) 92U, + z0gU, = W'(U,),
Up(—oc) = b_, Up(oo) = b_ OrUp(0) =0, Up(oc) =b_.

U;
b,
b Z
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on of ':‘ layers or Pores under Suong FCH

v 'J 1 )
Motion of Bllayers and Pores under Su ong FCH

Formal Multi-Scale Analysis of Curvature Driven Flow

Geometric evolution of bilayer and pore structures under the strong
FCH equation.

To generate a mass-preserving gradient flow, consider
= Ap,
where u is defined to be the chemical potential,

OF

Ju

= = (A — W' (u) +em) (2Au — W' (u))+e(m—m) W'(

Assumption : The interface is pearling stable.
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Asymptotic Analysis

Formal Mult-Scale Analysis of Curvature Driven Flow

Motion of Bilayers or Pores under Surong FCH

Mortion of Bilayers and Pores under Suong FCH

Bilayers Evolution vs. Pores Evolution

The formal expansion

p1(t1)
t)=Up+¢ ;
The normal velocity is coupled to
the chemical potential

V = (u; — B) Hy,
dpy
dtl

= — (1 —B) | H3dS

¥
Interface area evolution

difel _ V(s)Ho(s) dS
dty Jry

Noa Kralzman

The formal expansion

pa(t)
Wll(b_ )2 ’
The normal velocity is coupled to
the chemical potential

up(x,t) = Up(x) + ¢

V = (1 — P)R
0 — Y / 5 [? ds
dty | Jr,

Interface area evolution

difpl _ / V(s)- 7(s)ds
Jr,

dty
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Formal Multi-Scale Analysis of Curvature Driven How
Motion of Billayers or Pores under Surong FCH

e —- Motion of Bilayers and Pores under Suong FCH

Competitive geometric evolution of bilayers and pores

Bilayers and Pores

@ [, is an admissible co-dim 1 interface, |I'p| ~ O(1),

e [, is an admissible co-dim 2 interface, |I[,| ~ O(c~1).

Introduce the composite solution

- — e H1 o o :‘2
upp(x,t) =Up+Up—b_—¢ Wb )2 O(=7)

e The two morphologies compete with each other for surfactant
phase through the common, temporally varying, value p1(t7).

Assumption : The interfaces are pearling stable. |
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Formal Multi-Scale Analysis of Curvature Driven Flow
A on of Bllayers or ?‘«'u-:s und rong FCH

Mt;(lmofBIayusandPauuthmFCH

Asymptotic Analysis

Competitive geometric evolution of bilayers and pores

Bilayers interface area evolution Pores interface area evolution
d|lp| 2 d|lp| 12
"t — (u1—B) [ H2ds = (1 —P) | |RPds
dtl (l ) My o dtl JIp

@ The value of i is determined by the mass constraint for the

combined bilayer-pore structures _Titeddouble-wel potential_
M= L1 |Q|+mp|lp|+emp|l
~ W"(b_)? [+mp|lp|+emp|lp

@ The critical values depend only upon *|
the functionalization parameters,
M., 17> and the potential well W.
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Formal Multl-Scale Analysis of Curvature Driven Flow
. ic Anabysi Motion of Bllayers or Pores under Surong FCH

Motion of Bilayers and Pores under Surong FCH

Fingering Instability
Meandering Equilibria

Y Y Y Y Y Y Y ¥ v ¥ ¥ v v
Y Y Y Y Y Y ¥y ¥ v ¥ ¥y v v
Y Y Y Y Y Y v v v v v ¢
- Y ¥ Bilayers grow & finger A S
. . ¥ ¢ Poresgrow&finger ¢ ¥
g Yy ¥ ‘ Y ¥ v v + Bilayers shrink
% ‘Y oy : & ¢ 3 Pores grow & finger
— Y Y ¥ Y ¥ v
= Bilayersgrow&finger " A 4 A 4 A 4 4 4 4
:'3: 0.2 Pores shrink A A A A A A A A 44
e N N
£ A  ABilayersshrink 4 4 4 4
.* A 4 Poresshrink 4 4 4 4 —0B
T S N N N N N
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Rigorous Analysis

Generic Interfaces : Reduction to Finite (Big) Problem

; _ [nLn ALn
~|NLA ALA

o The spectrum of the operator LM is bounded below

by o > 0 independent of £ (Promislow & Hayrapetyan, 2014)
e The off-diagonal operators are O(<), in norm.
@ The spectrum of L is controlled by the spectrum of MLIT.
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The Pearling Conditions

Rigorous Analysis

Generic Interfaces : The Eigenvalue Problem

o N :=dimR(N)= 0O(c3/2-9).
e Eigenvalues are coupled through
the non-constant curvatures, V k.

Constant curvature part

pr——
o -an O
) 0 « --- 0
fmit= §. . . | +€A(k)
0 --- 0 x|

e Ac RWxN) g uniformly bounded as an operator on IQ(RN).
if |[|&||lwe is bounded.
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Rigorous Analysis

Generic Interfaces : The Eigenvalue Problem
The Functionalized Cahn-Hilliard

F = / =2Au— W'(u))? - ()(1}1% Vul? + mW(u)) dx

Bilayers Pearling stability Pores Pearling stability

py > P = Cp(m — ), p1 > Py = Cp(m — m2),

o

e At leading order, the pearling conditions are independent of
the interface.

@ As observed by Szostak, an increase in charge density impacts
pearling.
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Pearling Bifwwrcation: The Eigenvalue problem
Reduction to Finite Problem

The Pearling Conditions

Rigorous Analysis

Pearling Vs. Meandering

The geometric evaluation of the combined bilayer-pore system
V, =vp(p1 — P)E,
Vb — I./b(/ll — B)Ho
d[ll

e —(p1— B) | H3ds —emp(py — P) / K% ds.
; JTp JIp

The bilayers and pores pearling stability condition
p1 > fp, 1 > .
e The chemical potential, p;, is dynamic on the 7 = O(z71)

time scale.
@ [he time-scale of the of the pearling instability is 7 = O(¢).

The pearling instability manifests itself on a time scale that is
instantaneous with respect to the underlying geometric evolution.

4
—
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