# Bifurcation & Competitive Evolution of Network Morphologies in the Functionalized Cahn-Hilliard

Noa Kraitzman

Michigan State University

May 17, 2015



### Very Brief Overview

We are interested in a model which describes phase separation of a binary mixtures of an amphiphilic molecules and solvent.





We consider the flow of interfaces under a generalized free energy.



- The coexistence of bilayer & pore structures,
- Bifurcation of bilayer & pore morphologies.



### Motivation - Szostak: Primitive cell division





PNAS 2011&2012: Increasing background lipid concentration derives the bilayer into fingering (top), oxidation via illumination induces surface charge which drives the pore into micelles (right).

#### Pores to Micelles







### The Cahn-Hilliard Energy

Cahn & Hilliard (1958) expended the free energy

$$\tilde{\mathcal{E}}(u) = \int_{\Omega} f(u, \varepsilon^2 |\nabla u|^2, \varepsilon^2 \Delta u) \, dx$$

$$= \int_{\Omega} f(u,0,0) + \varepsilon^2 A(u) |\nabla u|^2 + \varepsilon^2 B(u) \Delta u \, dx$$

Integrating by parts the B term yields the classical Cahn-Hilliard free energy

$$\mathcal{E}(u) = \int_{\Omega} \frac{\varepsilon}{2} |\nabla u|^2 + \frac{1}{\varepsilon} W(u) \, dx$$

where, considering a binary mixture,

- $\Omega \in \mathbb{R}^d$  bounded domain,  $d \geq 2$ ,
- u : Ω → ℝ is the volume fraction of one species,
- ε controls the width of the boundary layer,
- $W(u): \mathbb{R} \to \mathbb{R}$  is a tilted double-well potential with minima at  $u = b_{\pm}$  and  $W''(b_{\pm}) > 0$ .





### From Cahn-Hilliard to Functionalized Cahn-Hilliard

For amphiphilic mixtures: Tuebner & Strey (1987), Gompper & Schick (1990) added higher order terms

$$\tilde{\mathcal{F}}(u) := \int_{\Omega} f(u,0,0) + \varepsilon^2 A(u) |\nabla u|^2 + \varepsilon^2 B(u) \Delta u + \overbrace{c(u)}^2 (\varepsilon^2 \Delta u)^2 dx$$

For the primitive  $\bar{A}$  of A, so that  $\nabla \bar{A} = A \nabla u$ , integrating by parts and completing the square yields

$$\tilde{\mathcal{F}}(u) := \int_{\Omega} C(u) \left( \varepsilon^2 \Delta u - \frac{\bar{A} - B}{2C} \right)^2 + f(u, 0, 0) - \frac{(\bar{A} - B)^2}{4C} dx.$$

Fixing the constants we have

$$\tilde{\mathcal{F}}(u) := \int_{\Omega} \frac{1}{2} \left( \varepsilon^2 \Delta u - W'(u) \right)^2 + \tilde{P}(u) \, dx.$$

The Functionalized Cahn-Hilliard free energy

$$\mathcal{F} = \int_{\Omega} \frac{1}{2} (\varepsilon^2 \Delta u - W'(u))^2 - \varepsilon (\eta_1 \frac{\varepsilon^2}{2} |\nabla u|^2 + \eta_2 W(u)) dx$$

### Functionalized Cahn-Hilliard Vs. Cahn-Hilliard



Cahn-Hilliard to Functionalized Cahn-Hilliard: Zooming  $\times 500$ .

A porous membrane assembled from cholormethylated polysufone (CPSF) with pyridine graphed via nucleophilic substitution (ammonium agent). Energy Environ. Sci. 6 776 (2013).

### The Cahn-Hilliard Euler-Lagrange Equation

Fix an admissible interface  $\Gamma_*$ , solve the Euler-Lagrange equation

$$-\varepsilon^2 \Delta_x U + W'(U) = 0$$
 in  $\Gamma_{*,\ell}$ .

#### Co-dim 1, \*=b

Bilayer profile,  $U_b(z)$ , solves

$$\begin{cases} \partial_z^2 U_b = W'(U_b) \\ U_b(-\infty) = b_-, \ U_b(\infty) = b_- \end{cases}$$



#### Co-dim 2, \*=p

Pore profile,  $U_p(z)$ , solves

$$\begin{cases} \partial_R^2 U_p + \frac{1}{R} \partial_R U_p = W'(U_p), \\ \partial_R U_p(0) = 0, \ U_p(\infty) = b_-. \end{cases}$$



### Formal Multi-Scale Analysis of Curvature Driven Flow

Geometric evolution of bilayer and pore structures under the strong FCH equation.

To generate a mass-preserving gradient flow, consider

$$u_t = \Delta \mu$$
,

where  $\mu$  is defined to be the chemical potential,

$$\mu := \frac{\delta \mathcal{F}}{\delta u} = \left(\varepsilon^2 \Delta - W''(u) + \varepsilon \eta_1\right) \left(\varepsilon^2 \Delta u - W'(u)\right) + \varepsilon (\eta_1 - \eta_2) W'(u).$$

Assumption: The interface is pearling stable.

### Bilayers Evolution vs. Pores Evolution

#### Bilayers

The formal expansion

$$u_b(x,t) = U_b + \varepsilon \frac{\mu_1(t_1)}{W''(b_-)^2}.$$

The normal velocity is coupled to the chemical potential

$$V = (\mu_1 - B) H_0,$$

$$\frac{d\mu_1}{dt_1} = -(\mu_1 - B) \int_{\Gamma_b} H_0^2 dS$$

Interface area evolution

$$\frac{d|\Gamma_b|}{dt_1} = \int_{\Gamma_b} V(s) H_0(s) \, dS$$

#### Pores

The formal expansion

$$u_p(x,t) = U_p(x) + \varepsilon \frac{\mu_1(t_1)}{W''(b_-)^2}.$$

The normal velocity is coupled to the chemical potential

$$\vec{V} = (\mu_1 - P)\vec{\kappa}$$

$$\frac{d\mu_1}{dt_1} = -\varepsilon (\mu_1 - P) \int_{\Gamma_P} |\kappa|^2 ds$$

Interface area evolution

$$\frac{d|\Gamma_p|}{dt_1} = \int_{\Gamma_p} \vec{V}(s) \cdot \vec{\kappa}(s) \, ds$$

### Competitive geometric evolution of bilayers and pores

#### Bilayers and Pores

- $\Gamma_b$  is an admissible co-dim 1 interface,  $|\Gamma_b| \sim O(1)$ ,
- Γ<sub>p</sub> is an admissible co-dim 2 interface, |Γ<sub>p</sub>| ~ O(ε<sup>-1</sup>).

Introduce the composite solution

$$u_{b,p}(x,t) = U_p + U_b - b_- - \varepsilon \frac{\mu_1}{W''(b_-)^2} + O(\varepsilon^2)$$

• The two morphologies compete with each other for surfactant phase through the common, temporally varying, value  $\mu_1(t_1)$ .

Assumption : The interfaces are pearling stable.

### Competitive geometric evolution of bilayers and pores

#### Bilayers interface area evolution

$$\frac{d|\Gamma_b|}{dt_1} = (\mu_1 - B) \int_{\Gamma_b} H_0^2 \, ds$$

Pores interface area evolution

$$\frac{d|\Gamma_p|}{dt_1} = (\mu_1 - P) \int_{\Gamma_p} |\vec{\kappa}|^2 ds$$

• The value of  $\mu_1$  is determined by the mass constraint for the combined bilayer-pore structures

$$M = \frac{\mu_1}{W''(b_-)^2} |\Omega| + m_b |\Gamma_b| + \varepsilon m_p |\Gamma_p|$$

 The critical values depend only upon the functionalization parameters, η<sub>1</sub>, η<sub>2</sub> and the potential well W.



# Fingering Instability



## Generic Interfaces: Reduction to Finite (Big) Problem

#### Decomposing $\mathbb L$ into a $2 \times 2$ block form



- The spectrum of the operator Π̄LΠ is bounded below by δ > 0 independent of ε (Promislow & Hayrapetyan, 2014)
- The off-diagonal operators are O(ε), in norm.
- The spectrum of L is controlled by the spectrum of ΠLΠ.

### Generic Interfaces: The Eigenvalue Problem



- N := dimR(Π) = O(ε<sup>3/2-d</sup>).
- Eigenvalues are coupled through the non-constant curvatures, ∇<sub>s</sub>κ.

$$\Pi \mathbb{L}\Pi = \begin{bmatrix} * & 0 & \cdots & 0 \\ 0 & * & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & 0 & * \end{bmatrix} + \varepsilon A(\kappa)$$

•  $A \in \mathbb{R}^{(N \times N)}$  is uniformly bounded as an operator on  $I^2(\mathbb{R}^N)$ , if  $||\kappa||_{W^{2,\infty}(\Gamma)}$  is bounded.

Noa Kraitzman

DQ (3

### Generic Interfaces: The Eigenvalue Problem

The Functionalized Cahn-Hilliard

$$\mathcal{F} = \int_{\Omega} \frac{1}{2} (\varepsilon^2 \Delta u - W'(u))^2 - \delta(\eta_1 \frac{\varepsilon^2}{2} |\nabla u|^2 + \eta_2 W(u)) \, dx$$

#### Bilayers Pearling stability

$$\mu_1 > P_b^* := C_b(\eta_1 - \eta_2),$$

#### Pores Pearling stability

$$\mu_1 > P_p^* := C_p(\eta_1 - \eta_2),$$

where  $C_b$ ,  $C_p$  are constants, depend upon the well W(u).

- At leading order, the pearling conditions are independent of the interface.
- As observed by Szostak, an increase in charge density impacts pearling.

# Pearling Vs. Meandering

The geometric evaluation of the combined bilayer-pore system

$$\begin{aligned} \mathbf{V}_p &= \nu_p(\mu_1 - P)\vec{\kappa}, \\ V_b &= \nu_b(\mu_1 - B)H_0, \\ \frac{d\mu_1}{d\tau} &= -(\mu_1 - B)\int_{\Gamma_b} H_0^2 \, ds - \varepsilon m_p(\mu_1 - P)\int_{\Gamma_p} |\vec{\kappa}|^2 \, ds. \end{aligned}$$

The bilayers and pores pearling stability condition

$$\mu_1 > \mu_b^*, \mu_1 > \mu_p^*.$$

- The chemical potential, μ<sub>1</sub>, is dynamic on the τ = O(ε<sup>-1</sup>) time scale.
- The time-scale of the of the pearling instability is  $\tau = O(\varepsilon)$ .

The pearling instability manifests itself on a time scale that is instantaneous with respect to the underlying geometric evolution.