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Gene Regulatory Networks

Why do we need to qualitative mathematical analysis of these networks?
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Current Model Framework

@ Since the qualitative analysis of such networks began in the 1970s,
the network has been viewed as a single product system.

@ Protein products are taken to directly promote or inhibit the growth
of other products within the network.

@ The interaction between products is given the “switch on” and
“switch off” characteristic present within each gene.
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Current Model Framework

A system of n genes then takes the form

n— hia,x,...., %) — e
xg = Fa(xqy, X2, ...y Xq) — Y22
Xp = Fp(x1, X2, ..., Xn) — YnXn,

where x;(t) is the concentration of the product i at time t.
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Protein-only models

Current Model Framework

A system of n genes then takes the form

Xi = Fl(Xl.XQ, ....,Xn) — 71X1 (1)
Xy = Fa(x1, X2, ... Xg) — Y2X2

Xp = Fp(X1, X2, ---y Xn) — YnXn,

where x;(t) is the concentration of the product /i at time t.

@ The functions F; are production rates corresponding to the protein
concentration x; which, in general, are taken to satisfy F; > 0.

@ The F;'s capture how x; changes given the current concentrations of
proteins within the network which promote or inhibit x;'s production.
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Current Model Framework

Since protein regulation within a gene network is often well approximated
by steep sigmoids, we take

Fi(x1, 50, -y X)) = Fi{ £1001), £2002), ..., Zn{%a)),

where each Z;(x;) is a Hill function

x
=
Zi(x;) = H(x;,0;,9) = ——~, q€(0,1].
0; +x;’
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Current Model Framework

This results in the model framework
an— B4, 5, ... 2] — 6
X2 = F(41, 25, ...., Zn) — Y2X2

Xn — Fn(Zl. Zz. ..... Zn) — ’Yan.
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Protein-only models

Current Model Framework

This results in the model framework

wn—hi4H, 5, ... 2.) — e
X2 = F(21, 23, ..., Zn) — Y2X2

Xp = Fn(Zla v - Zn) — YnXn-

This is a smooth system of differential equations but highly-nonlinear.
Qualitative analysis is facilitated by taking the limit as ¢ — 0, giving a
non-smooth system where each Z; = 0 or 1 depending on the value of x;.

But now there are new analytic difficulties when flows are constrained to
switching domains for non-zero time intervals.
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Analysis of flows in switching domains

There are two main ways of analyzing the flow in switching domains.
@ Singular Perturbation Theory
@ Filippov Theory

Both of these methods have problems in some situations.

@ Singular Perturbation Theory requires restrictive conditions to apply;
generalizations deal with some other cases, but then non-uniqueness
can arise.
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Analysis of flows in switching domains

There are two main ways of analyzing the flow in switching domains.
@ Singular Perturbation Theory
@ Filippov Theory

Both of these methods have problems in some situations.

@ Singular Perturbation Theory requires restrictive conditions to apply;
generalizations deal with some other cases, but then non-uniqueness
can arise.

@ Filippov Theory ignores information about how a trajectory arrived in
a particular domain, and has significant trouble with non-uniqueness
and spurious solutions, only partially solved by using an alternative
definition of Filippov solution.
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Protein-only models

Singular Perturbation Analysis :

Consider the following 2-gene system (Plahte & Kjgglum)

Xl — Zl == ZQ — 22122 — Y
xx=1— 2125 — Y,

where 71 = 0.6, 72 = 0.9, #; = 2 = 1 with initial conditions x;(0) = 1.4
and x2(0) = 1.9.
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Protein-only models
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Protein-only models

Singular Perturbation Analysis '

Consider the following 2-gene system (Plahte & Kjgglum)

x1=24+242 — 2572 — nx
Xo =1 — 2125 —yaxa,

where 71 = 0.6, 7o = 0.9, #; = 6, = 1 with initial conditions x;(0) = 1.4
and x(0) = 1.9.
Since x1(0) > 61 and x2(0) > 62, we have Z; = Z> = 1. Thus,

x1 = —0.6x1
X-2 - —O.QXQ,

»—h at £t —056
What happens once xj hits its theshold?
Look at behaviour of Z7 instead of x7 as it reaches 64!
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Protemn-only models

Singular Perturbation Analysis )

Letting ' denote the derivative with respect to fast time, 7 = g, we arrive
at the system
L 512
e ) (1—Z1 — 0.6x1) (2)
q X149
xl
2_-1—-7; —0.90
q
since xo > 1.
Muliplying by g and analyzing the system as g — 0, we have
Z1(1-Z
Z! = 1 - ) (1—Zy — 0.661) (3)
1
xp— 0
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Protein-only models

Singular Perturbation Analysis :

The result is a 1-dimensional system with an asymptotically stable fixed
point Z; = 0.4.

This implies that x; stays fixed at #1, while x; resumes regular flow with
Z; =04

Plugging this into the x» equation we get

)52 —F—ER— O.9X2.

This means the x, variable decreases towards the value 88 until it hits its

threshold 5. This sliding motion is known as ‘sliding’ or singular flow.
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Protein-only models
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Protein-only models

Singular Perturbation Analysis :

Although we omit the details, a similar process can be used to analyze the
2-dimensional switching domain

Z{ — 21(19— 4) (L1 + 24 — 244, — 0.601) (4)
1
ZhE— 2
Z} = 2 - 2) (1 — Z12Z> — 0.967)
2

which has Z-dynamics shown here
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Protein-only models

Singular Perturbation Analysis y

@ There are 2 fixed points in the Z representation of this switching
domain, a stable spiral and a saddle.
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Singular Perturbation Analysis

@ There are 2 fixed points in the Z representation of this switching
domain, a stable spiral and a saddle.

@ Singular perturbation theory says that when trajectories enter this
2-dimensional switching domain, where they end up depends on
where they entered. This information is not taken into account in
Filippov Theory.

@ Our sample trajectory would enter from the top and spiral into the

stable fixed point, and thus the solution remains at the threshold
Intersection.

@ If instead our trajectory entered the bottom, it would exit along the
line x1 > 67 and x2 = 65.

Gene Network Models Including mRNA and Protein Dynamics 17 / 40




An mRNA-protein model framework

An alternative approach

@ In gene network models, singular flow happens when a gene actively
regulates its own production, i.e., autoregulates.

@ In current models, autoregulation can cause variables to become
“stuck” at a threshold, but this is a consequence of only tracking
protein concentrations.

Consider the following single gene equation:
Xi == Zl - 0.5X1,

with 81 = 1, x(0) = 2 and Z; a step function.
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An alternative approach
Singular perturbation theory shows that the concentration reduces until it

reaches its threshold and then remains there with Z; = 0.5.
Is this realistic?

@ In the true biological system represented by this equation, when x1(0)
starts above its threshold, the gene is off and therefore not
transcribing any mRNA, so x; drops as a result of degradation.
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An alternative approach

Singular perturbation theory shows that the concentration reduces until it
reaches its threshold and then remains there with Z3 = 0.5.
Is this realistic?

@ In the true biological system represented by this equation, when x1(0)
starts above its threshold, the gene is off and therefore not
transcribing any mRNA, so x; drops as a result of degradation.

@ Once x7 crosses its threshold, the gene begins producing mRNA, but
not enough at first for translation of new protein to exceed protein
degradation, so x; continues to drop.

@ After a non-zero interval, there is enough mRNA for protein
concentration xj to increase again.

@ [his behaviour, under normal circumstances, results in damped
oscillations until the protein concentration converges to its threshold,
the same asymptotic result as predicted by the protein-only model.
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An alternative approach
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@ [his behaviour, under normal circumstances, results in damped
oscillations until the protein concentration converges to its threshold,
the same asymptotic result as predicted by the protein-only model.
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An alternative approach

@ More drastic differences can arise at theshold intersections, as we will
see.

@ [The mRNA-protein model framework we believe better captures
behaviour of gene networks around thresholds when autoregulation is
present in the system.
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The mRNA-protein model framework

The new approach includes an additional variable for each gene in the
system:

= R4, 2o, ... 25) — Tv%
y1 = Kki1x1 — By
x2 = F(21,22, ..., Zn) — Y2x2

Y2 = Kax2 — [Bay» (5)
Xp= Fal24, £3, ..., Zn) — YnXn-
Y2 — KpXp — .Bn}’n

where Z; = H(y;, 0;, q), a function of y; instead of x;.
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The mRNA-protein model framework

@ System (5) is an mMRNA-Protein model (or transcription-translation
model), where x; is the concentration of mMRNA transcribed by the jth
gene and y; is the concentration of the protein product corresponding
the ith gene.

@ The mRNA equations contain the switching functions to reflect the
switching on and off of transcription.
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Basic properties of the new model

@ The first notable property of the expanded system is that the it
production term, F;, does not contain x;.

@ This means that this system behaves more like a protein only model
that does not have autoregulation.
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. . .
Basic properties of the new model

@ The first notable property of the expanded system is that the it
production term, F;, does not contain x;.

@ This means that this system behaves more like a protein only model
that does not have autoregulation. |

@ Autoregulation may still be present in the network, but it shows up as
damped oscillations instead of hitting a wall and sliding.

@ This results in each threshold being “transparent”, meaning that
trajectories cannot hit a threshold and stay there.

@ They may, however, spiral into an asymptotically stable fixed point on
a threshold or at an intersection of thresholds.

@ Thus, this expansion largely avoids singular flow.
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An mRNA-protein model framework

Limiting behaviour of the new model (fast mRNA)

Theorem

Let q > 0 and an initial condition (x;(0), y;(0)) fori = 1,...n of (5) be
fixed. Let y;, for i =1, ..., n be a solution for the protein concentrations of
the system

il
Xj = E(Fi(zla 2 25) B (6)
Vi — 86— 5% owr—K . m

Then in the limit as € — 0, the solution y: converges uniformly to the
solution of the system

% _
Vi = 7—tFi(ZI,Z2, —rn)— iy, Fwi=1, .. m
I

on any finite time interval.

>
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Limiting behaviour of the new model (fast mRNA)

@ If our expanded system’s new parameters, [3; and k;, happen to have
the right values, as we take the mRNA rates arbitrarily fast, we
recover the dynamics of the unexpanded system on ANY finite time
interval.

@ But, this theorem does not give us information regarding the
asymptotics of the system for any £ > 0.
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Analysis of the expanded Plahte-Kjgglum system

Recall the system of equations studied by Plahte and Kjgglum

xXx1 =241+ 22 — 251722 — x
X.2 — R— 2122 — Y2X2.

Using our new framework, we expand this system to include both protein
and mRNA concentrations

X'1 — Z]_ e Zz — 22122 — Y1X1
y1 = K1X1 — Biyna (7)
Xo =1 — 2125 — 72x3

y2 = Kax2 — [Pay2
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Analysis of the expanded Plahte-Kjgglum system

Setting the RHS of (7) to zero,

Xi = Zl == Zz = 22122 — Y1X1 = 0
y1 =ki1x1 — Piy1 =0
Xo =1— 2125 —yox3 =0

Y2 = Kax2 — Bay2 = 0,
then solving for x; in the x; equation and plugging it into y;, we get

. K
Y1 = ’Y—i (Z1+ 4o —241245) — Piy1 =0

.
Y2 = 7—2 (1—2142) — Bay2 = 0.
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Analysis of the expanded Plahte-Kjgglum system

Therefore, fixed points in the fast dynamics at the threshold intersection
y1 = 01, y2 = 6 occur when Z; and Z; satisfy

Bim
K1

——6>, = 0.

21+ 24 — 221245 —
B2

K2

——6 =0
1 - 2414 —

This is has the same form as the requirement for a fixed point in the
original system, except that the parameters in front of the y;'s (6;'s) are
different.

In fact, there are values of the k; and [3; for which no fixed point of the
fast dynamics exists.

Setting ¢; = ﬂ40 we compute the parameter regions for which there are
0,1 or 2 fixed pomts
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Analysis of the expanded Plahte-Kjgglum system
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Analysis of the expanded Plahte-Kjgglum system

@ This is the first major difference between the protein and
mRNA-protein models.

@ Leaving the protein degredation rate the same, the expanded model
allows for 0, 1 or 2 fixed points in the threshold intersection.

@ Thus for some values of the new parameters, there is no fixed point
at the threshold intersection and the macroscopic behaviour must be

different.

@ These possible differences in structure are suppressed when the gene
network is only modeled by a single protein concentration.
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An mRNA-protein model framework

Analysis of the expanded Plahte-*Kjgzsqum system

e Taking k; = ; with 31 = 0.6 and 3> = 0.9 we recover the same two
protein equations as in the Plahte system with 2 fixed points in the
threshold intersection.

@ In the protein only model, stability analysis in the threshold

intersection is done in the fast time, 7 = %

@ Here however, this approach does not help because there are always
slow variables

We therefore need to analyze the system as a whole without taking g — 0.
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Analysis of the expanded Plahte-Kjgglum system

The Jacobian at P = (x{, x5, 24, Z5) with g > 0 is given by,

- Ox 9% T
in 8 041 04>
0o -5 B %
q - 5
0 =2 0 =

L q g

Denoting A as an eigenvalue of this matrix, we can compute the
ki Zr(1—-Z7)

= L w-
()
Multiplying through by g?, then taking the limit as g — 0 we obtain the
polynomial

Oxo 0x1 Ox2 Ox1 Oxo Ox1

4 2

— | =—=—A+ —A — AA — = 0.
H (322 2 01 1) H oo (321 0> 02> 821)

characteristic polynomial in terms of u = A,/q, where A; =
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Analysis of the expanded Plahte-Kjgglum system

9% 9% O%x 0%,  O%p OX
4 _2 o = 2 : 2 1 _
= (az2 Mt 5z A‘) He = h (azl 80Z, 02 azl) 0. (8)

@ We note that the roots of (8) come in + pairs

@ Since roots of polynomials depend continuously on their coefficents,
we can make the roots of the characteristic polynomial in i as close
to the roots of (8) as we wish by taking g small enough.

@ Therefore, if (8) has a root with a non-zero real part, then we can
find a 4 > 0 such that the characteristic polynomial in p has a root
with non-zero real part for all 0 < g < 4.

@ Since the roots of (8) come in + pairs, i has a root with positive real
part for all 0 < g < 4, and A is a positive scalar multiple of L.

@ Therefore, if we have a root of (8) with a non-zero real part, then we
can find a > 0 such that the fixed point P = (x7, x5, Z{,Z5) is
unstable for all 0 < g < 4.
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Analysis of the expanded Plahte-Kjgglum system

@ This analysis does not tell us when a fixed point is stable, but it gives
us an easy way to test if it is unstable.

@ If the roots of (8) are all pure imaginary, then we are unable to say for
sure whether the fixed point is stable or unstable.

@ Asymptotic spiralling approach to a threshold intersection is possible;
this may correspond to the above case.

@ Apart from such special cases, expanding the model of gene
regulatory networks in this way generally has a destabilizing effect on
fixed points in co-dimension 2 or higher switching domains.
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Numerics for the expanded Plahte-Kjgglum example

If we compute the polynomial (8) in the expanded Plahte-Kjgglum
example, the first fixed point gives the (rounded) roots

117 = 0.28321i
11, = —0.28321i
13 = 0.31456

114 = —0.31456,

and the second gives

g = 0.17325 — 2.4305i
p2 = —0.17325 + 2.4305)
p3 = 0.17325 + 2.4305i

s = —0.17325 — 2.4305i.
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An mRNA-protein model framework

Numerics for the expanded Plaht*e-Kj¢qum example

Thus, even with parameters that give us the same protein equations as in
the original system, both fixed points in the threshold intersection of the
expanded system are unstable. Further analysis shows that the fixed point
on the right wall is asymptotically stable.
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Non-uniqueness again

Non-uniqueness again

The mRNA-protein model allows new behaviours:

@ Flow crosses walls in both directions, but each wall can be partitioned
into smaller domains to preserve unique flow direction.

@ T[here are solutions that graze the wall from both sides at the same
point, leading to non-uniqueness again!

Y:
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Conclusions

@ The problem of singular flow results from modelling choices.

@ Including mRNA and protein avoids singular flow.

Gene Network Models Including mRNA and Protein Dynamics 39 / 40




Conclusions

@ [he problem of singular flow results from modelling choices.
@ Including mRNA and protein avoids singular flow.

@ However, sensitive behaviour near threshold intersections can cause
drastic changes to macroscopic behaviour of solutions.

I S - Nt Models Icluding mRNA and Procein Dynamics 39 / 0|




Conclusions

@ [he problem of singular flow results from modelling choices.
@ Including mRNA and protein avoids singular flow.

@ However, sensitive behaviour near threshold intersections can cause
drastic changes to macroscopic behaviour of solutions.

@ Even if mRNA dynamics is much faster than protein dynamics,
suppressing it can lead to misleading conclusions.

@ The mRNA-protein model can be analyzed, but still allows
non-uniqueness in the step-function limit.

@ Expanding other non-smooth systems in this way might be a useful
mathematical tool for analyzing dynamics.
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