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The Obama BRAIN Mapping Initiative, the Human
Connectome Project and the Human Brain Project
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MGH-UCLA Human Connectome Project
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Functional connectivity correlation matrix
WU/Minn Consortium

http://www.neuroscienceblueprint.nih.gov/connectome/
https://www.humanbrainproject.eu/



Massive clinical brain imaging studies

Harvard Functional Neuroimaging Laboratory

Philadelphia Neurodevelopmental Cohort (data
from over 9500 individuals)



Microcircuit Structure and Connectomics

Fine structure. A composite of artificially colored
EM images reveals details within a cylinder of mouse
brain tissue, smaller than a grain of sand, that
contains 680 nerve fibers and 774 synapses.

www.sciencemag.org SCIENCE VOL 342 22 NOVEMBER 2013

Lichtman lab (Harvard)



Further, none of this data is independent!




This massive data is already being
produced. What are are we going to do with
all of 1t?



The development of tools for detecting
structure in and reasoning about these
huge, noisy, nonlinear datasets is one
of the fundamental challenges in
modern neuroscience.

Opinion: algebraic topology is an
untapped source of exactly these sorts
of tools.
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Motivating Question:

How do we detect structure or absence
of structure In a correlation matrix?
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Random convergence of olfactory inputs in the
Drosophila mushroom body

Sophie J. C. Caron’, Vanessa Ruta®, L. F. Abbott"? & Richard Axel"** 2 M 2 L 497 | NATURE | 1

doiz10.1038/nature12063
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Glomeruli

Figure 4 KCs do not receive structured input. a, Two glomeruli projecting
to the same KC are considered a connected pair. All possible connected pairs
are depicied as squares in a 53 X 53 matrix (51 AL glomeruli and 2
pscudoglomeruli), coloured according to their observed frequency in the data
(white outlined squares along the diagonal depict the frequency of identical
pairs where a glomerulus is paired with itself). b, The frequency of KCs



Often, the answer is: compute
spectra!

A Spectrum of A

-2 0 2
Eigenvalues are real, lie in [-2, 2]

and are distributed along a semicircle
(Wigner's semicircle law)

1000 x 1000 random matrix
with entries sampled
independently from N(O,1)



Is this the right tool for the job?

Wigner's semicircle law is a limiting theorem,
so not a stable signature for small matrices ...



Is this the right tool for the job?

Wigner's semicircle law is a limiting theorem,
so not a stable signature for small matrices ...

IMRI Response
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Single Neuron Response

... and, biological responses (and measurements
thereof) to stimuli often have monotonic nonlinearities,
under which the spectrum is not invariant!



This might lead to “detection” of
structure where none exists!

f(A)

f(x)= a—be™ ™
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1000 x 1000 random matrix

with entries sampled
independently from f(N(0,1))
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Eigenvalues are real, lie... hmm.



How do sighatures of extant
structure fare?

B Spectrum of B
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Four non-zero eigenvalues

rank 4 matrix

(product of a 1000x4 matrix
and a 4x1000 matrix)



Signhatures of structure are
destroyed, too.

f(B) Spectrum of f(B)
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nonlinear transform of a Again, hmm.
rank 4 matrix

(product of a 1000x4 matrix
and a 4x1000 matrix)




Goal:

Find a tool that recognizes pertinent
structure, or lack thereof, in matrices,
which is robust to monotonic
nonlinearities and is reliable for small
matrices.



The “Correct” Question

What structure is invariant when we apply
a monotonic (increasing) transformation to
the elements of a matrix?



The “Correct” Question

What structure is invariant when we apply
a monotonic (increasing) transformation to
the elements of a matrix?

f(x) iIs monotonic increasing if
X <y implies f(x) < f(y)

So, the order of the elements is preserved.



“Order Complex” of a Symmetric

Matrix
o | Eﬂ
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How do we use this to detect structure?
Compute persistent homology of clique complexes.



What is persistent homology?

A measure of the evolving
structure of cligues in the
graphs...




What is persistent homology?

A measure of the evolving

structure of cligues in the
graphs...
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... obtained by counting
o o cycles of various
dimensions, up to some
equivalence relation ...
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... sSummarized as “Betti
curves” indexed by graph
edge density.
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This method provides a robust
signature of random (iid) matrices.
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These Betti curves are stereotyped
for matrices with entries drawn iid
from any distribution.



Are there matrices with different
signatures?
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Are there matrices with different
signatures?

60p % geometric N =88
points uniformly

chosen in [0,1]*
D=-d

0 0.2 0.4 0.6
edge density P

The triangle inequality introduces (roughly)
an upper bound on the lifetime of a cycle.



Where might we expect to find
“geometric structure”?

“Place cells” in hippocampus
have receptive fields that
correspond to physical location.
However, they are not
correspondingly physically
organized, so we can only
hope to see this structure in activity. [llustration of a Hippocampus
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How do the Betti curves compare?

60¢ 88 o
1000¢ random/shuffled /\ geometric
® — B,(p) =
< 600} 2 S
S — Ps(p) S
#* 400}
200} ; v
/ “
0 L . AN N
0 0.2 0.4 0.6
edge density P
lace cell data
4, P B, = ‘
5)2 30+ o B3(p) % § _
(&} !
- o
S 20, o) ?
S| s
10t | &
] .9 . 2 9
0 f o 5 g — = - hr= —_— =
0 0.2 0.4 0.6 — - =

edge density p I B, B,



Surprisingly, this structure persists
across behaviors!

spatial navigation
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Surprisingly, this structure persists
across behaviors!
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Conclusion: “geometric” structure is a fundamental property of the
functional connectivity of the hippocampus, and not a result
of stimulus or state.



