Rare event extinction on stochastic networks

Leah Shaw

Department of Applied Science, College of William and Mary

Brandon Lindley, Ira Schwartz

Nonlinear Systems Dynamics Section, Naval Research Laboratory

Sponsors: ARO, AFOSR, NIH, ONR

Outline

- Analytic approach for optimal (most probable) path to extinction
- Disease extinction in a static social network
 - Lindley, Shaw, and Schwartz, Europhysics Letters 108: 58008 (2014)
- Extinction in an adaptive social network

Optimal path to extinction

Extinction analysis

 Stochastic effects are described by the master equation for probability density ρ(x,t) to find system in state x at time t

$$\frac{d\rho(\mathbf{x},t)}{dt} = \sum_{\mathbf{r}} \left[w(\mathbf{x} - \mathbf{r}; \mathbf{r}) \rho(\mathbf{x} - \mathbf{r}, t) - w(\mathbf{x}; \mathbf{r}) \rho(\mathbf{x}, t) \right]$$

where r are transition vectors (change in x), and w are transition rates

- Use WKB/eikonal approximation:
 Assume probability distribution ρ(x)~e^{-N S(x)}, where S(x) is called the action
- Maximizing extinction probability requires minimizing action over all possible paths to extinction (calculus of variations problem)

(Kubo et al J Stat Phys 1973, Gang PRA 36: 5782, 1987; Dykman et al J Chem Phys 100: 5735, 1994, Forgoston et al Bull Math Biol 2011)

Extinction analysis

 The position and momentum variables on the optimal path are described by the following equations of motion:

$$\dot{x} = \frac{\partial H}{\partial p}; \quad \dot{p} = -\frac{\partial H}{\partial x}$$

$$H(x, p; t) = \sum w(x; r) (e^{p \cdot r} - 1)$$

where *H* is the Hamiltonian and p is momentum (force due to the noise)

- The optimal path is the heteroclinic orbit from endemic to extinct state
- Task: Find this heteroclinic orbit; use action S(x) on path to predict extinction time
- Challenge: This system is high dimensional

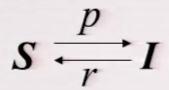
Disease extinction in a static social network

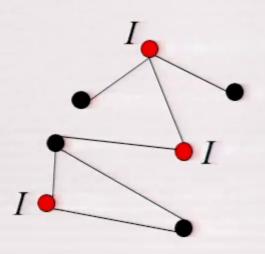
(Lindley, Shaw, and Schwartz, EPL 2014)

SIS model on static network

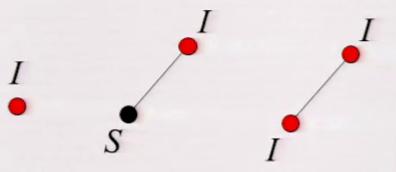
Epidemic model:

- Infection rate p, recovery rate r, conserved population (N nodes, K links)
- Consider transitions in number of nodes and number of links of each type, ignoring higher order structure (similar to pair-based proxy model, Rogers et al JSTAT 2012)
- Variables $P_I = \frac{N_I}{N}$, $L_{SI} = \frac{N_{SI}}{N}$, $L_{II} = \frac{N_{II}}{N} 3$ position variables, plus 3 momentum variables





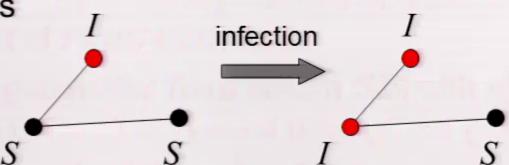
Variables:



State transitions

Assume each node has neighbors given by network averages

Enumerate transitions



Transition 1: Infection along network

$$w_1 = \varepsilon p N_{SI} \qquad \qquad r_1 = \left[1, \frac{2N_{SS}}{N_S} - \left(1 + \frac{N_{SI}}{N_S} \right), \left(1 + \frac{N_{SI}}{N_S} \right) \right]$$

Transition 2: Infection through global coupling (mass action)

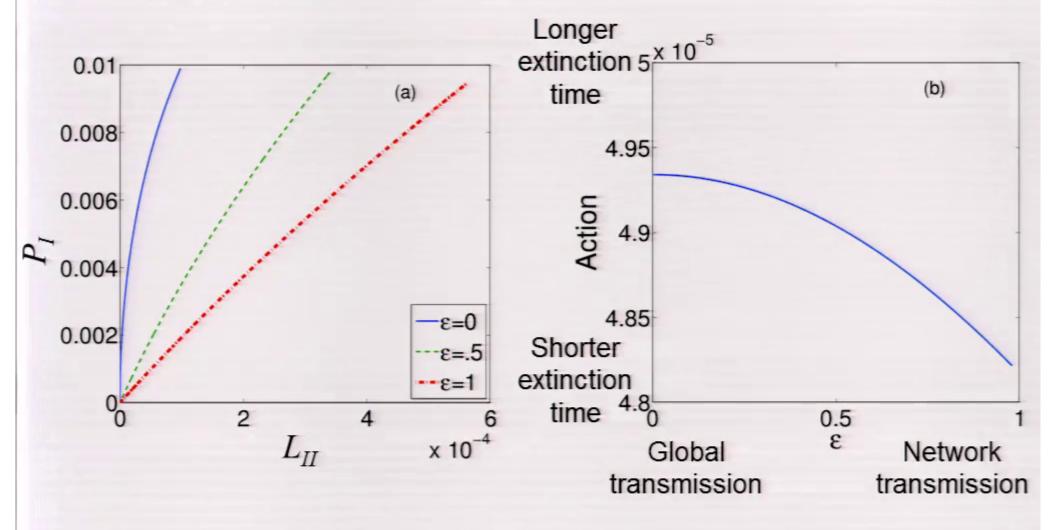
$$w_2 = (1 - \varepsilon) p \frac{2K}{N^2} N_S N_I$$
 $r_2 = \left[1, \frac{2N_{SS}}{N_S} - \frac{N_{SI}}{N_S}, \frac{N_{SI}}{N_S} \right]$

Transition 3: Recovery

Global vs network transmission

Path to extinction:

Effect on lifetime:

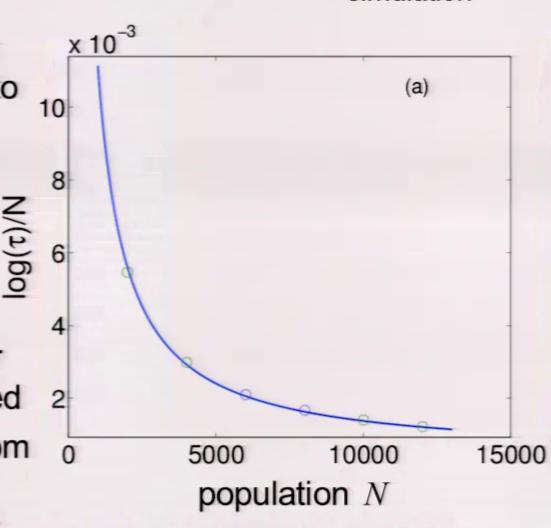




Epidemic lifetime

theorysimulation

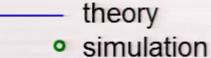
- Expect mean lifetime τ inversely proportional to probability
- Recall assumption
 ρ(x)~e^{-N S(x)}
- This implies (log τ)/N independent of N
- Not so here prefactor (order of N^{-1/2}) is needed
- Use τ = B e^{N S} with B from globally coupled SIS model (Billings et al PLoS ONE 2013)

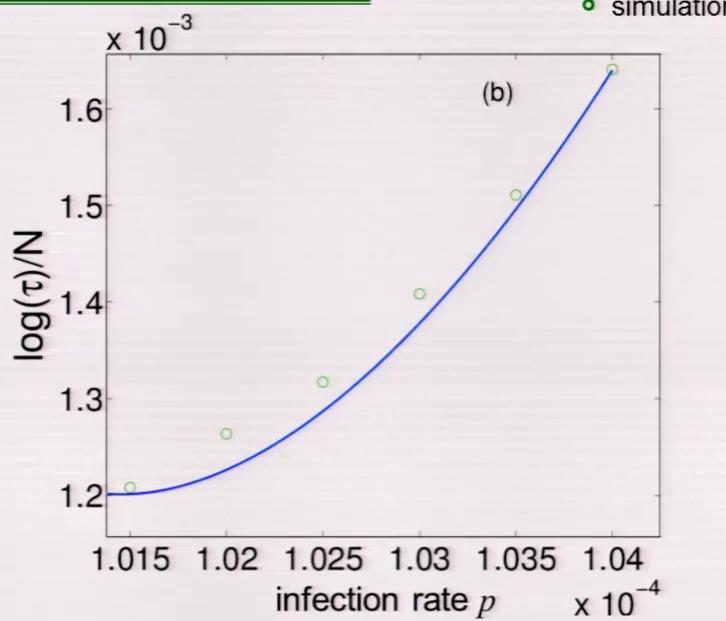


$$p=1.03\times10^{-4}, r=0.002, \varepsilon=1, N=10^{4}, K=10^{5}$$



Epidemic lifetime



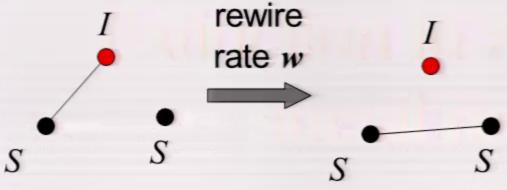


Add avoidance rewiring

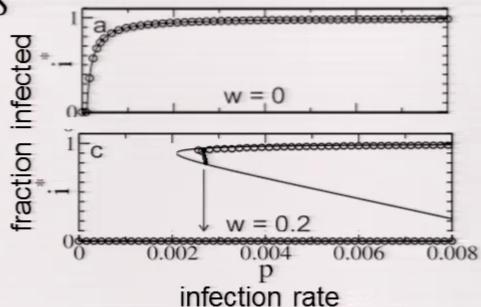
Epidemic dynamics:

$$S \stackrel{p}{\longleftrightarrow} I$$

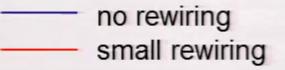
Network dynamics—avoidance:

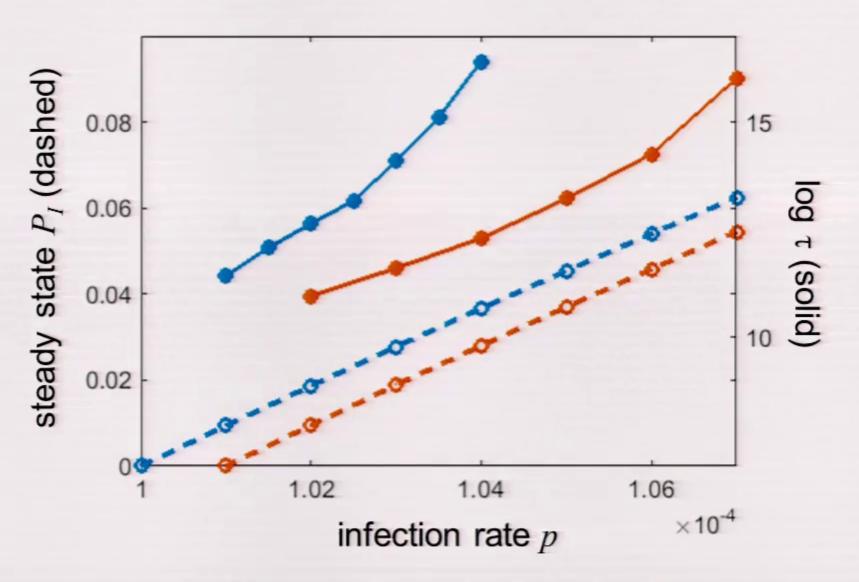


Gross et al, PRL 96: 208701, 2006



Extinction in adaptive network – small rewiring





w=0 or $w=2\times10^{-5}$, r=0.002, $N=10^4$, $K=10^5$

Conclusions

- Apply optimal path approach to extinction on a network
 - Node and link transitions from pair-based proxy model
 - Perturb from known solution for globally coupled system
 - Use IAMM to track optimal path
- Predicted path to extinction matches stochastic network simulations
- Extinction time matches simulations when appropriate prefactor is used
- Add network adaptation (small avoidance rewiring)
 - Extinction times substantially reduced