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Geometric Nonlinearity
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Lattice

Finite lattice of particles oscillating in the plane

Next-neighbor interactions through linear springs,[; =l =1/(n+ 1)

1

mul + TiCOS¢i - Ti+1COS¢i+1 =0
mv; + T;sing; — Ti1Sing;,1 =0
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Lattice

In the limit of small-energy oscillations and small angles, we expand
the geometrically nonlinear terms in Taylor series in terms of the
small differences (u;—u;_1) and (v;—v;_4 ) to get,

T; = kli&, & [(uz_ul 1)+ 5 (Uz—vz, 1) ]+
cosgp; =1+ 0[(ui — ui—1)2; (Vi — vi—1) |

1

sing; =7 (Vi = vig) + Ol(w; = u-1), (v; = Vi)
L

Finally we introduce the re-scalings,

1/2
K\ g2u; £V,
T=¢|—| t  u — , v — —
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Lattice

Then the equations governing the axial oscillations are,

efu’ — (wipq +ujg — 2u) — 5 (ipr —v)? + %(vi —Pi1)” e
=0, U =Up41 =0
or in terms of the re-scaled axial tensions,
ul'+T,—Tyy1+--=0

The equations governing the transverse oscillations are:

v; — (U1 — U Wipq — V) — E(vi+1 — ;)3

1
+ @ — )W —vi-g) + E(vi —vi_1)° +-- =0,

Vo = VUn41 =0
This permits the partition of the axial dynamics in terms of slow and
fast parts and the asymptotic treatment of the dynamics.
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Lattice

At the leading order slow approximation with € = 0 we neglect the
axial inertia effectstoget Ty =T, =+ =T,,4.1 = T. Since,
n+1

n
= 1 i 1 2
e e
n+1Z4? 2(n+1) (Va+1 = a)
p=1 q=0

at leading order the tension is constant in space but varies in time.
When higher-order terms are taken into account the tension varies
slowly in space.

Then the leading-order approximation for the transverse oscillations
is an essentially nonlinear sonic vacuum with strong non-locality:

1 n
v; (1) + TCTEY Z(vq+1 = vq)2 2v;(7) — vi41(7) — ;-1 (7))
q:
+ =0, Vo = Vpyq = 0

EILLI\U\ 7



Aside: Granular Sonic Vacuum

A different nonlinear sonic vacuum is found in the acoustics of
ordered uncompressed granular media.
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Aside: Granular Sonic Vacuum

Considering a one-dim granular lattice
e
m k5+32 m kds_: m k532n1 ké',“ m
with equations of motion ‘

miu, =k [(UH — &%, )3_2 v (ui ~Hi )in

oscillations or waves with wavelengths much longer than the lattice
distance / (long wavelength approximation — LWA) correspond to:

u,.(r)—ﬂl(i»’)} = u (1) >u(x.1)

ih— x
u,, (1) > u[(i£Dht]|=u(ih£h,t)=
cu(x,t) +h' o u(x,t) L

u (xi h,r) =u(x,t)xTh
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Aside: Granular Sonic Vacuum

Correct up to O(%°) obtain the essentially nonlinear wave equation

O'u _3kh’* ( éu )1: &’u .
or*  2m \ ox) o'
Compared to the classical wave equation,

u ([ u
el ey
ot~ (Gx' ]

the LWA leads to an essentially nonlinear wave equation, with zero
speed of sound (as defined in classical acoustics)

There is complete absence of linear acoustics = ‘Sonic vacuum’
(Nesterenko, 2001)
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|:] Resonance Interactions

Returning to the discrete nonlinear sonic vacuum, it can be proven
that it has exactly n orthogonal NNMs with spatial dependencies
identical to the normal modes of the linear lattice,

1
)
V. +
E 2(n+1)

(2v; = Vi1 —v21) =0, Vy=Vp 1 =0

and amplitudes governed by nonlinear modal oscillators,

1 pTT
Cy (1) +ng C; (1) =0, wj =2 [1 — CoS (n 5 1)]
We wish to study |:l internal resonances between two arbitrary
NNMs, say the k — th and p — th NNMs, and express the vector of

transverse deformations of the lattice as,
()= Ck(‘r)@( - Cp(T)Qp, p,k€l,..,n]

This restricts the nonlinear dynamics of the lattice to the invariant
manifold defined by the two NNMs.
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|:] Resonance Interactions

Using the orthogonality conditions of the NNMs we reduce the
dynamics to the system of coupled oscillators,
17 1r ]
Cr (0) +| G (Dwi + G (D wj | G(r) = 0
1

p
€(z) +- CE(Dwi + C; (Dwy :wg Cy(t) =0

or, by setting A;(t) = C;(t) sin (2(::;1))’ to:

L (1) + :A,ZC(T) + Al,z9 (r): wi Ap(t) =0
Ay (1) + | AZ(T) + A3, (1) wp Ap(T) =0

To impose the condition of |:I resonance we assume that the
frequencies of the two interacting NNMs are close. If their amplitudes

are of the same order this implies that (wlz, - a),zc)/a),zc = & &4,

which introduces a small parameter in the problem.
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|:] Resonance Interactions

Then we introduce the transformations,
)1 (1) = A (1) + jQAR(T) = @1 (11) e/
Yo (1) = A%(T) +jQAp(T) = @2 (T1)€]m, 1= &7

and perform slow/fast partitions of the dynamics on the I:I
resonance manifold. Letting,

@; = a;elPi, i =1,2,

a, = (i) sinf, a, = (i) cosf, A= p[f,—[4

Wp Wk
we reduce the dynamics on an iso-energetic two-torus (8,A) €
[O, g] X [0, ).

Not all combinations of (k, p) € [n X n] lead to nontrivial dynamics
on the torus, so not all pairs of NNMs can engage in |:| resonance.
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|:] Resonance Interactions

For the two highest-order NNMs, k = n — 1 and p = n, the dynamics
on the torus are shown below.
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|:1 Resonance Interactions — Pseudo Traveling VWave
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|:1 Resonance Interactions — Pseudo Traveling VWave
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|:]1 Resonance Interactions — Strong Energy
Exchanges between NNMs close to LPT
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|:] Resonance Interactions Between Pairs of NNMs
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