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Introduction
oc

Perturbed Sweeping Processes

S:Ry =3 R™; S§(t) closed.

dr € f(t,z)dt — Ns()(z) .

Ns(z) is the normal cone to S at z.

V : R™ =3 R" is state-dependent. g

dg=vdt !
dv € F(t,q,v)dt — Ny (q)(v)




Introduction

Outline

o Generalized First Order Sweeping Process

© Output Regulation with Convex Sets

© State Estimation in Second Order Sweeping Process



Let S : R, =2 R® be closed and convex.
= f(t,z) + Gn
v=Hz +Jn, v(t) € S(t)
n € —Ns(v)



Let S : R, = R® be closed and convex.

z = f(t,z) + Gn
v=Hx+Jn, v(t) € S(t)

n € —Ns(v)
Linear Complementarity .
"‘ S=R
R
| e Q EQC
0<nlv>0 —

N1
@ Sweeping Process [Moreau; Monteiro Marques; Colombo; Thibault]
and [Participants of MS78, MS91 at SIAM DS'15]
@ Evolution Inclusions [Aubin; Celina]
@ DVIs & complementarity [Cottle; Pang; Stone; Stewart|
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Existence and Uniqueness of Solutions for DVIs [CDC '14]

(DVD) : &= f(t,z) +Gn, n € —Ns(Hz + Jn)
Theorem (Sufficient Conditions for Well-posedness of DVI)

There exists a unique absolutely continuous (a.c.) solution of (DVI), if
(Al) J>0and3P=P" >0st ker(J4+JT7) Cker(PG—HT).
(A2) range H N (S(t) + range J) # 0, Vt > 0.
(A3) The mapping t — S(t) is a.c., i.e.,3 an a.c. function
v(-) : [0,00) = R, s.t.
|d(v,S8(t1)) — d(v,S(t2))| < |v(t1) — v(te)|, Vi1,t2 > 0.
(A4d) f(t,z) is is globally Lipschitz in x and a.c. in t.

@ There exists an operator ® s.t. &(t) € f(t,z) — G ®(t, Hx(t)).

@ Under (A1), (A2), 3 a maximal monotone operator ¥(t,-), a Lipschitz
continuous function g(t, ), and a transformation z = Rz s.t.

2(t) € g(t,2) — ¥(¢,2)
@ Earlier results only consider the case J = 0 or J positive definite.



[System 1 System 2]

&

Control design: Exchange information between systems so that a subset
of System 1 trajectories track a subset of System 2 trajectories.

© Output Regulation with Convex Sets



Regulation Problem

[ Exosystem J

~\

y=Ca:}L’”=C"$’"

Plant

J/

(

.

Ty—yr

Controller
J

Exosystem (Ref. Generator)

T, = A, T, + Grnr
Nr € _NS(err = Jr")r)

A

Plant Dynamics

&= Az + Bu+ Fz, + Gn

n € —-Ns(Hz + Jn)

Motivation: Such exosystems can generate nonsmooth trajectories.

Design the control input u such that

@ [he resulting closed loop system is well-posed

@ The regulation error w = Cx — C,x, converges asymp. to zero

@ The overall closed-loop system is asymp. stable



Regulation with Static Feedback [CDC "14]

z, = Az, + G,.n, = Ax+ Bu+ Fz, + Gn
e € =Ns(H,z, + J:n,) ne€ —-Ns(Hz + Jn)

Theorem (Regulator Synthesis Conditions)
Under (A2), (A3), if there exist matrices M, K,Il and P > 0 s.t.
e Passivity of (A+ BK,G,H,J):

(A+BK)'P+P(A+BK)+~«P PG-H' <0
GTP-H = A | R

e Internal model (IM): I1A, = AlI+ BM+F A CH-C,=0
e Constraint matching (CM): IIG, =G A HII=H, AN J.=J

hold, then (OR) is solvable with|u = K + (M — KII)z,

Tools and Analysis:
@ Well-posedness <= (A1) <« Passivity
@ Regulation error converges <= Internal model principle
@ Closed-loop Stability <= Constraint matching and passivity



Regulation with Error Feedback [CDC '14]

Premise: Only w := y — y, is measurable, and full state (z, z,) is not
available.

§E=(A-LO)+Lw+Bu+Gw; 7n€-Ns(HE+Tn)

(DC)
u=K¢, + (M- KT,



Regulation with Error Feedback [CDC "14]

Premise: Only w := y — y, is measurable, and full state (z, z,) is not
available.

E=(A-LO)¢+Lw+Bu+Gm; 7€ -Ns(HE+Tn)

(DC)
u=K¢, + (M — KTI)¢,

Theorem (Regulation with Dynamic Compensator)
e If(A+BK,G,H,J) and (A — LC,G,H,J) are passive,
@ and the matrices M, 11 satisfy (IM), (CM) hold

then (DC) solves (OR).

@ Dynamic compensator is based on certainty equivalence principle,
and £ := (&;,&,) estimates (z,x,.), which are used by control wu.

@ Well-posedness and stability follows from similar tools.



Regulation with Static Feedback [CDC "14]

z, = Az, + G,.n, = Ax + Bu+ Fz, + Gn
Ty € —.N’S(Hr-rr%"]r’)r) UE—NS(H-T‘{"J”?)

Theorem (Regulator Synthesis Conditions)

Under (A2), (A3), if there exist matrices M, K,Il and P > 0 s.t.
e Passivity of (A+ BK,G,H, J):

(A+BK)"P+P(A+BK)+~4P PG-HT

GTP—_H —(J+Jy| =°

e Internal model (IM): I1A, = AlI+ BM+F A CIH-C,=0
e Constraint matching (CM): IIG, =G A HI1=H, A J.=J

hold, then (OR) is solvable with|u = K« + (M — KII)z,




Regulation Problem

[ Exosystem J

Plant

=

(

\

Ty—yr

Controller
J

Exosystem (Ref. Generator)

T, = Az, + Grnr
n, € —Ns(H,z, + J.n,)

A

Plant Dynamics

= Az + Bu+ Fz, + Gn

n € —Ns(Hz + Jn)

Motivation: Such exosystems can generate nonsmooth trajectories.

Design the control input u such that

@ [he resulting closed loop system is well-posed

@ The regulation error w = Cx — C,.x, converges asymp. to zero

@ The overall closed-loop system is asymp. stable



Regulation — Convex Case

Regulation with Static Feedback [CDC "14]

z, = Az, + G, = Az + Bu+ Fz, + Gn
Tr = ‘—NS(HrIr‘FJr’)r) 77€—NS(H‘T+J77)

Theorem (Regulator Synthesis Conditions)

Under (A2), (A3), if there exist matrices M, K,Il and P > 0 s.t.
e Passivity of (A+ BK,G,H,J):

(A+ BK)"P+P(A+BK)+yP PG-HT

GTP—H —(J+J7)| S¢

e Internal model (IM): I1A, = AlI+ BM+F A CIH-C,=0
e Constraint matching (CM): IIG, =G A HIl=H, AN J,=J

hold, then (OR) is solvable with|u = K + (M — K1)z,

Tools and Analysis:
e Well-posedness <= (A1) < Passivity
@ Regulation error converges <= Internal model principle
@ Closed-loop Stability <= Constraint matching and passivity
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A Case Study: Regulation with Constraints

Plant: Tz = Az + Bu
Constraint set: S(t) :={z|z+g(t) >0}
Objective: Find u such that Cz — C,z, — 0 and Hz(t) € S(t).
Decompose u = urpr + uq
Choose urps = Kx + (M — Kl1l)z, for regulation using IM principle.
Choose u,, for constraints using complementarity relations
uy(t) € —Ns@)(Hz(t))
& 0 <uy(t) Ly(t) = Hz(t) +9(t) 20
e un(t) =0 if Hz(t) € int S(¢)
0<u,(t) Ly(t) >0 if Hz(t) € bd S(¢)

Limitation: Relative degree 1 between input and constrained states



Plant: 21 = —0.121 + 29, To = U.
Objective: xo(t) = x2(t) and z5(t) € S(t) :={z :

Exosystem (LCS): (32) =[% 1]z + [ % 9] ns;
0<nL(7F2)+(})>0

Tr2
Control: u = uyps + w1 + u,y2, where uyyy = Kyz + Koz, and
o< ()Ll ) +(1)=>0

Uyp2 ro
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(a) Time evolution (b) Phase portrait



- Unconstrained motion:
M (q)s + F (t,q,v) =0 S

- Constraints:

hi(g) > 0 \

- An impact (jump) rule. ~ M) >0




Estimation — Second Order

Second Order Processes: Mechanical Systems with Impacts

- Unconstrained motion:
M(q)v + F(t,q,v) =0
- Constraints:

hi(g) > 0
- An impact (jump) rule.

Velocity set at h;(q) = 0: @ v is rcbv with countably
many discontinuities.
V(g) :={w e R"| (w, V4hi(q)) > 0} @ Existence (and uniqueness)

holds under mild

System description: assumptions (analyticity).
= @ Solution, in general, is not

M(q)dv + F(t, q,v)dt € —N\’(q)("' ), continuous with respect to
pt + ev™ initial conditions.




Estimation — Second Order

R (Q1v)
q (4,0)
[ Plant J {Estimatorj k% >

Our proposed estimator is a first order sweeping process:

21 = Fi(t,q, 2)
M (q)dzs + F5(t,q,2)dt € —Nv(q)(ﬁe) (obs)

qd = g1(z1.9q). v = 22 + g2(21,q).

@ In (obs), the set-valued map V(-) is parameterized by the external
state g of the plant.

@ Position estimated by the estimator ¢ does not satisfy the constraints:
hi(gq) = 0.

@ V(.) is lower semi-continuous and does not satisfy the “usual”
nonempty interior condition.

@ The (obs) admits a unique solution for an observed trajectory g(-),
even if the plant does not have unique solutions.




Estimation — Second Order
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Results on State Estimation

Let = := (q,v) and z := (q,?).

Theorem (Design of Estimator)

Under certain regularity assumption on system data, we can calculate the
functions Fy, Fy and gy, gy such that

e Well-posedness: (obs) admits a unique solution
o Exponential convergence: |&(t) — z(t)| < ce Pt|x(0) — £(0)|

Error Analysis:
g=1v— ﬁl(t,x,iz)
M(g)dv + F(t,z) — Fy(t, z,%) € —(n — 1)
N E€Nv(ve) and 7 € Ny(q)(De)

Induce dissipation in error dynamics (during flows) w.r.t. quadratic
Lyapunov function

W(q):=q¢"'Rj+v' M(q)d.

@ Well-posedness result is more involved.



Estimation — Second Order
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Example: 3-Ball Chain with Walls

20 Observer for colliding balls
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Estimation — Second Order

Example: A Nonconvex Biliard

Observear for Ball Bouncing in a Hyperbolic Billard
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