Eulerian geometric integration of fluids for computer graphics

Mathieu Desbrun

Applied Geometry Lab Caltech

Discrete Differential Modeling

Computing thru finite-dim. version of continuous theory

- we leverage differential geometric understanding
 - ... for computational purposes
 - geometry as a guiding principle to discretization
 - coordinate free and intrinsic representations
 - dynamics through discrete variational principles
 - of both academic and practical interests
 - conserved quantities, symmetries, structural identities
- Today: Eulerian simulation of fluids
- $\frac{\partial u}{\partial t} + (u \cdot \nabla)u = -\nabla p$ etics $\nabla \cdot u = 0$ circulation-preserving method of characteristics
 - integration via discrete volumorphisms

Spatial discretization

Eulerian grid

- domain discretization = simplicial complex
 - or any type of grid...

Spatial discretization via discrete forms

- fluxes through faces for velocity
 - intrinsic (coordinate-free) and Eulerian
- net flux for divergence
 - what comes in...must come out
- flux-based spin for vorticity
 - torque created on a "paddle wheel"

Discrete Exterior

Laplace operator; discrete de Rham complex

Time Integration?

By preserving important structures!

- circulation preservation is key
 - erucial for visual impact
 - volutes in smoke
 - vortices in liquids

For each (n-2)-simplex

- backtrack loop in current velocity
 - deduce new circulation
 - i.e., new discrete vorticity
- find new velocity field
 - simple Poisson equation

Circulation preserved for any discrete loop, even on curved spaces

Example: Vortex Shedding

Traditional test: flow past a circle

Example: Vortex Shedding

Rotating Obstacle [Re = 15,000]

Rotating Obstacle [Re = 15,000]

Smoking Bunny

Geometry of Fluids

Euler equations represent geodesic flows

rarely used in CFD, yet geometrically appealing

Lie group of volume preserving diffeomorphisms

- motion = geodesic on this group
 - ☐ [Lin, Newcomb, Bretherton, Arnold, Marsden et al.]

Many dynamical systems based on this idea

- extends nicely w/ semidirect product & advected params
 - □ Euler-Poincaré systems with advection [Holm, Marsden, Ratiu...]
 - magnetohydrodynamics & plasma
 - complex fluids (e.g., liquid crystal)
 - stratified rotating fluids, various Boussinesq approximations

Discrete Setup in a Nutshell [Pavlov]

Discretizing Koopman's unitary operator

- matrices pushing forward scalar functions
 - function f stored as one value per cell F_i
 - matrix q encodes volumorphism through qF ≈ φ* f

- reflecting mass preservation and volume preservation
- i.e., orthogonal, signed doubly stochastic matrices

$$\mathcal{D}(\mathbb{M}) = \{ q \in \mathbb{R}^{N \times N} | q^T q = \text{Id}, \sum_j q_{ij} = 1 \ \forall i \}$$

$$\mathfrak{D}(\mathbb{M}) = \{ A \in \mathbb{R}^{N \times N} | A^T + A = 0, \sum_j A_{ij} = 0 \ \forall i \}$$

Use Lagrange-d'Alembert, Lin constraints

- and non-holonomic constraints to keep velocity local
- u you get: $2h^2 \dot{A}_{ij} + [A, A^{\flat}]_{ij} + p_j p_i = 0$

$$\dot{v}^{\flat} + \mathbf{L}_v v^{\flat} + \mathbf{d}p = 0$$

2D Obstacle Course

Two Taylor vortices at a distance near bifurcation

4056 triangles

55296 triangles

2D Obstacle Course

Two **Varying Discretization** Because our integrator preserves energy exactly, the liveliness of the flow does not depend heavily on the particular choice of temporal or spatial discretization.

On 3D Tet Meshes [Mullen]

Heated smoke rises around round obstacle

Discrete MagnetoHydroDynamics

As expected, key invariants preserved [Gawlik]

- energy conserved over long runs
- cross-helicity preserved exactly
- ☐ no spurious magnetic reconnection (same topology of field lines)
 - when magnetic resistivity is null

Discrete MagnetoHydroDynamics

As expected, key invariants preserved [Gawlik]

- energy conserved over long runs
- cross-helicity preserved exactly
- no spurious magnetic reconnection (same topology of field lines)
 - when magnetic resistivity is null

Other Numerical Benefits

Again, robustness to coarse sampling

- incompressible Orszag-Tang vortex (growth of MHD current sheets)
 - □ current density contours, 2048² vs. 64²

Cordoba & Marliani '00

Complex Fluids

2D Simulation

nematic liquid crystal, microstretch continua

□ based on recent formulation by Gay-Balmaz & Ratiu

Even Geophysical Flows

General circulation of atmosphere or ocean

- based on the Navier-Stokes equations
- on a rotating sphere
- with thermodynamic terms for energy sources

Stratified and/or rotating fluids

- 2.5D Boussinesq approximation for stratification
- one advected parameter (buoyancy) or two (geostrophic momentum)

Captures hydrostatic/geostrophic adjustments

☐ Emitted gravity waves with correct spectrum

Barotropic Anticyclonic Shear

Inertially stable/unstable flows (based on Rossby number)

- emission of inertia-gravity waves vs vorticity ejection
 - captures fine details usually smeared by dissipation

Followups & Future Work

- ☐ Hamiltonian view of incompressible fluids
 - see Gemma Mason's work
- Model-reduced fluids
 - low count basis
 - work by Liu & Mason
- ☐ Turbulence models
 - tests on LANS-α seem good

Flow analysis (LCS)?

Lagrangian setup?

Geometry-guided Computations

Computations that respect the geometry™

- computational science guided by geometry
- leverage geometric structures of mechanics
 - while recognizing the realities of computation

Discretize the geometric, variational principles

- □ NOT THE RESULTING PIDES
- importance of spatial discretization
- coordinate-free computations
 - □ DEC [Hirani], FEEC [Arnold]—perfect for E&M [Stern]

Lots more to explore

