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Discrete Differential Modeling

Computing thru finite-dim. version of continuous theory

1 we leverage differential geometric understanding
.. for Computational purposes
0 geome to discretization
1 coordinate free and intrinsic representations
1 dynamics through discrete variational principles
1 of both academic and practical interests
1 conserved quantities, symmetries, structural identities

ou
1 Today: Eulerian simulation of fluids = (- V)u=—Vp
1 circulation-preserving method of characteristics V-u=0

1 integration via discrete volumorphisms
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Spatial discretization

Eulerian grid
1 domain discretization = simplicial complex

1 orany type of grid...

Spatial discretization via discrete forms

1 fluxes through faces for velocity
1 intrinsic (coordinate-free) and Eulerian

1 net flux for divergence
1 what comes in..must come out Discrete

1 flux-based spin for vorticity -
B N Calculus
1 torque created on a “paddle wheel

Converting velocity to/from vorticity
1 Laplace operator; discrete de Rham complex




Time Integration?

(t)
By preserving important structures! | / \>
1 circulation preservation is key <
i : T . Y il 4
1 crucial for visual impact
1 volutes in smoke
1 vortices in liquids
(t-h) C(t-h)

For each (n-2)-simplex
1 backtrack loop in current velocity _/\ %
1 deduce new circulation .y
1 ie., new discrete vorticity . @‘
1 find new velocity field ' P -—
1 simple Poisson equation \

Circulation preserved for any discrete loop,even on curved spaces
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Example: Vortex Shedding

Traditional test: flow past a circle




Example: Vortex Shedding

iIncreasing viscosity

Vorticity plot




Rotating Obstacle [re-=15,000]




Rotating Obstacle [Rre = 15,000]




Smoking Bunny




Geometry of Fluids

Fuler equations represent geodesic flows
1 rarely used in CFD, yet geometrically appealing

Lie group of volume preserving diffeomorphisms
1 motion = geodesic on this group

Many dynamical systems based on this idea
1 extends nicely w/ semidirect product & advected params
Euler-Poincaré systems with advection | Holm. '
magnetohy drodynarmcs & plasma
complex fluids (e.g., liquid crystal)
stratified rotating fluids, various Boussinesq approximations
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Discrete Setup in a Nutshell (»-

Discretizing Koopman'’s unitary operator
1 matrices pushing forward scalar functions

1 function f stored as one value per cell F,
1 matrix q encodes volumorphism through qF ~¢@* f
1 preserve constant functions & L, inner product of functions
1 reflecting mass preservation and volume preservation
1 ie., orthogonal, signed doubly stochastic matrices
D(M) ={g € RVN| T g =1d, Zj gij =1 Vi}
D(M)={AcRVV AT +a=0,} A;j=0 vi}
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Use Lagrange-d’Alembert, Lin constraints l: T
1 and non-holonomic constraints to keep velocity local |

4 you get 2h2AZJ — [A J4D]Z‘J' — Pj —DPi = 0

A\




2D Obstacle Course

Two Taylor vortices at a distance near bifurcation

4056 triangles

55296 triangles
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2D Obstacle Course

Varying Discretization

Because our integrator preserves energy exactly, the
liveliness of the flow does not depend heavily on the
particular choice of temporal or spatial discretization.




On 3D Tet Meshes |

Heated smoke rises around round obstacle




Discrete MagnetoHydroDynamics

As expected, key invariants preserved
3 cnergy conserved over 10ng runs
cross-helicity preserved exactly

- no spurious magnetic reconnection (same topology of field lines)
1 when magnetic resistivity is null
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Discrete MagnetoHydroDynamics

As expected, key invariants preserved
1 energy conserved over long runs
1 cross-helicity preserved exactly
J no spurious magnetic reconnection (same topology of field lines)
1 when magnetic resistivity is null
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Other Numerical Benefits

Again, robustness to coarse sampling

1 incompressible Orszag-Tang VOrteX (growe of v cuent sheess)
1 current density contours, 20482 vs. 64

Cordoba &
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Complex FHluids

2D Simulation
1 nematic liquid crystal, microstretch continua
1 based on recent formulation by Gay-Balmaz & Ratiu
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Even Geophysical Flows

General circulation of atmosphere or ocean
1 based on the Navier-Stokes equations

4 ona rotating sphere
1 with thermodynamic terms for CNErgy sources

Stratified and/or rotating fluids

2.5D Boussinesq approximation for stratification
one advected parameter (buoyancy)

Or two (geostrophic momentum)
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Barotropic Anticyclonic Shear

Inertially stable/unstable tlows (based on Rossby number)
1 emission of inertia-gravity waves vs vorticity ejection

12 captures fine details usually smeared by dissipation




Followups & Future Work

1 Hamiltonian view of incompressible fluids
1 see Gemma Mason’s work

(J Model-reduced tluids

1 low count basis J
J work by [iu & Mason % 7~ : R=% =

(d Turbulence models S ALy 9
1 tests on [ANS-a seem good

Flow analysis (LCS)?

Lagrangian setup?

A\

Nove number &







Geometry-guided Computations

Computations that respect the geometry™
1 computational science guided by geometry
1 leverage geometric structures of mechanics
3 while recognizing the realities of computation

Discretize the geometric, variational principles
1 §OT THE RESULTIG PDES
1 importance of spatial discretization
1 coordinate-free computations
3 DEC , FEEC ‘—perfect for E&M

[ots more to explore
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