Cooperation, cheating and collapse in biological populations

Jeff Gore
Department of Physics
Massachusetts Institute of Technology

SIAM Conference on Dynamical Systems May 20, 2015

How do interactions between individuals determine the evolutionary and ecological dynamics of populations?

Where we are heading:

Can we tell that a population is about to collapse?

Where we are heading:

Can we tell that a population is about to collapse?

How can evolution lead to cooperation?

Where we are heading:

Can we tell that a population is about to collapse?

How can evolution lead to cooperation?

What are the consequences of cheaters in the population?

Collapse of cod population in Newfoundland

Positive interactions between individuals > Sudden collapse in deteriorating environments

Change in stability landscape may provide advance warning of population collapse

Predicted universal behavior near tipping point

Loss of resilience to perturbations

Possible early warning signals:

- Increase in recovery time after a perturbation
- 2) Fluctuations get larger and slower

"Can these universal behaviors be measured experimentally?"

Lei Dai Physics Grad

Daan Vorselen Visiting student

Laboratory microbial populations as a bridge between theoretical ecology and natural populations

Laboratory microbial populations as a bridge between theoretical ecology and natural populations

Budding yeast (S. cerevisiae)

Experimentally tractable:

- Small and simple
- Short generation time
- Quantitative measurements
- Environmental control
- Genetic manipulations
 - → Control strategies

Yeast benefit from other yeast in the population

Sucrose is broken down outside of the cell

Yeast divide more rapidly at higher cell density

Possibility of sudden collapse!

Experimental procedure: Serial batch culture

Experimental procedure: Serial batch culture

Yeast population size is bistable

Dilution Factor = 1400

Yeast population size is bistable

Dilution Factor = 1400

Yeast populations experience a fold bifurcation

Population less resilient near tipping point

Can indicators be observed before tipping point?

Population fluctuations increase near the tipping point

Stability vs resilience determines indicator performance

Population fluctuations increase near the tipping point

Stability vs resilience determines indicator performance

"How do these early warning indicators behave in spatially connected populations?"

Lei Dai
Physics student
→ Viral evolution @
UCLA

Kirill Korolev
Pappalardo Postdoc Fellow
→ Boston Univ Physics Dept

Recovery length is the spatial analogue to recovery time

Cooperation not always stable

Yeast growing on sucrose

Cheaters can often take advantage of cooperators

Greig & Travisano, Proc Royal Soc B (2004)

Gene knockout is a "cheater"

Cheater can spread in a population of cooperators

Growth rate decreasing!

Cheater can spread in a population of cooperators

Growth rate decreasing!

Cheater can spread in a population of cooperators, Cooperator can spread in a population of cheaters

Coexistence!

Snowdrift game: Cheat if your opponent cooperates Cooperate if your opponent cheats

Cooperators have preferential access to benefits

Alvaro Sanchez
Postdoctoral Fellow
Rowland Institute
of Harvard

"How might feedback between population dynamics and evolutionary dynamics determine the fate of populations?"

Evolution and population dynamics: Different timescales?

Evolution

~ 1 Million Years

Evolution and population dynamics: Different timescales?

Evolution

~ 1 Million Years

Population Dynamics

Seemingly erratic behavior of individual populations

Patterns revealed by the eco-evolutionary trajectory

"Spirals" are eco-evolutionary feedback!

Tracking of trajectories in eco-evolutionary space

Model

Tracking of trajectories in eco-evolutionary space

Cheaters don't significantly reduce population size, but do reduce resilience

How do spirals change near collapse?

A simple model of yeast growth yields spirals

Spiral changes as environment deteriorates

Spiral changes as environment deteriorates

Fixed point loses stability as environment deteriorates

Fixed point loses stability as environment deteriorates

Eventually the fixed point becomes unstable

Cooperative populations can collapse when environment deteriorates

Cooperative populations can collapse when environment deteriorates

Cheater strategies invade, but there is often coexistence and survival

Cooperative populations can collapse when environment deteriorates

Cheater strategies invade, but there is often coexistence and survival

Multi-species experiments may illuminate rules of community assembly

Cooperative populations can collapse when environment deteriorates

Cheater strategies invade, but there is often coexistence and survival

Multi-species experiments may illuminate rules of community assembly

Laboratory microcosms are a powerful window into theoretical ecology

Acknowledgements

Postdocs

Nic Vega

Christoph Ratzke

Jonathan Friedman

Avihu Yona

Barrett Deris

Alfonso Perez Escudero

Graduate Students

Saurabh Gandhi

Tanya Artemova

Eugene Yurtsev

Manoshi Datta

Kevin Axelrod

Hasan Celiker

David Healey

Logan Higgins

Arolyn Conwill

Former

Lei Dai

Kirill Korolev

Alvaro Sanchez

NEW INNOVATOR

- Your basic state is standing with your hands down (deactivation).
- If your nearest neighbors is standing, stand up (activation).
- After standing for a few seconds, sit back down (deactivation).
- Continually monitor your neighbors to activate or deactivate.
- Only stand when your nearest neighbors do, not before!

- Your basic state is standing with your hands down (deactivation).
- If your nearest neighbors is standing, stand up (activation).
- After standing for a few seconds, sit back down (deactivation).
- Continually monitor your neighbors to activate or deactivate.
- Only stand when your nearest neighbors do, not before!

- Your basic state is standing with your hands down (deactivation).
- If your nearest neighbors is standing, stand up (activation).
- After standing for a few seconds, sit back down (deactivation).
- Continually monitor your neighbors to activate or deactivate.
- Only stand when your nearest neighbors do, not before!

- Your basic state is standing with your hands down (deactivation).
- If your nearest neighbors is standing, stand up (activation).
- After standing for a few seconds, sit back down (deactivation).
- Continually monitor your neighbors to activate or deactivate.
- Only stand when your nearest neighbors do, not before!

