# FINITE-TIME BRAIDING EXPONENTS

(ARXIV: 1502.02162)





Supported by NSF grants DMS-0806821 (JLT) and CMMI-1233935 (MB, JLT) Marko Budišić Jean-Luc Thiffeault

SIAM Conference on Applications of Dynamical Systems Snowbird, UT, May 2015

### Complexity of the material transport





Complexity of the flow – rate of growth of material interfaces. Chaotic advection increases the rate of diffusion and/or reactions.



Newhouse, Pignataro (1993):
Fastest growth of material line is given by the topological entropy of the flow.

Growth of material lines is computed by front tracking – requires velocity fields and delicate numerical algorithms.

### **Sparse Lagrangian Sampling**





- (WHOI)
- edilitie com

(Rocky DEM)

- What if we have no access to velocity fields?
- Lagrangian trajectories the only data available: ocean drifters, granular flows, crowds
- Fast characterization of mixing:
  - no need to re-seed tracer
  - computation is cheaper



(Wilderness Films India Ltd.)

### Trajectories are represented by braids.



planar trajectories

"Spaghetti plot" of

Trajectories in space-time, "physical braid"

Project onto a plane and monitor exchanges







**Braid encodes** trajectory crossings as symbols (generators).





Topology retained, geometry discarded.

### Braids of punctured disks in dynamical systems



- More generally: braids are "labels" for flow maps (homeomorphisms)
- We use Artin generators: easy to deduce from data (other generator sets are also useful)
- braids form a non-commutative group with additional relations





#### Partial commutativity



Takeaway: Number of generators is not a good measure of complexity.

$$\sigma_1 \sigma_1^{-1} \sigma_1 \sigma_1^{-1} \cdots = e$$



### Advected material is represented by loops – "rubber bands".



|                | Full model               | Reduced model                          |
|----------------|--------------------------|----------------------------------------|
| Dynamics       | Non-autonomous ODEs      | <b>Braids of N trajectories</b>        |
| Material       | Detailed curves          | Loops pulled tight                     |
| Rate of mixing | Material line growth     | Braid entropy?                         |
| Advection      | Front/interface tracking | P/w linear maps on $\mathbb{R}^{2N-4}$ |
|                |                          | [Dynnikov, 2002]                       |

[Hall, Yurtas, 2009]

### Topological entropy of a braid (braid entropy)



Topological entropy: exponential rate of loop growth under iterated braid.

$$|\ell|, |b\ell|, \dots, |b^n \ell| \sim e^{h(b)n}$$
$$h(b) = \lim_{n \to \infty} \frac{1}{n} \log |b^n \ell|$$

Loop length: # of intersections with the horizontal  $b = \sigma_1 \sigma_1$ 



**Braid t. entropy ≤ Flow t. entropy** independent of the choice of trajectories

Specifying stirrer trajectories according to a high-entropy braid, forces the increase in flow entropy. (Aref, Boyland, Finn, Stremler, Thiffeault,...)



### Finite-Time Braiding Exponent



$$FTBE = \frac{1}{T}\log(|b_T\ell|/|\ell|)$$

Duration of recorded data instead of iterate no.

What's in a name?

FTBE to braid entropy is parallel to FTLE relative to Lyapunov exponents.

Why not stick with braid entropy?

- iteration of a braid justified only for periodic trajectories
- note: avoiding iteration removes the need for braid "closure"
- coarse: non-exponential regions all assigned zero braid entropy

### Dependence of FTBE on parameters





#### "Significant" parameters:

- number N of strands sampled
- duration T of trajectories
- loop used to compute FTBE
- locations of initial conditions

#### "Nuisance" parameters:

- trajectory integration step
- angle of projection of trajectories (rotational frame of trajectories)



FTLyapE is a scalar field over the flow domain. FTBraidE depends on N>1 initial conditions.

Thiffeault (2005), (2010) has preliminary statistics

### **Numerical study: mixing Aref Blinking Vortex**



Circular domain, periodic alternation between two integrable Rankine vortices







Circulation varied within mixing regime.

Mixing zone is the entire domain.

Classical expectations from ergodic theory:

- locations of initial conditions "forgotten" with time
- flow entropy depends on mag. of circulation

Braids (and FTBEs) are not "classical" observables – they "live" on a configuration space of particles, instead of the state space.

## In mixing flows, initial conditions quickly stop mattering.



- at each n we seed 100 n-tuples of trajectories
- compute mean and relative standard deviation



Variance decay consistent with Central Limit Theorem (mixing dynamics)

Mixing CLT carries through braid & FTBE calculations. What is the significance of the value of mean FTBE.

# Mean FTBE → flow entropy trajectories added.



Initial conditions drawn uniformly at random (100 ensembles for each point).

All trajectories long enough for mean FTBE to stabilize.

#### Spatial mean FTBE – colors are different circulation strengths

Topological entropy estimated by material advection.



Mean FTBE
approaches
flow entropy
as strands added



Limit mean FTBEs and flow entropy correlate across different circulations.

### Rebraiding saves simulation time.



#### Indepedent sampling:

Each braid gets its "fresh" set of simulated trajectories.

#### Resampling:

From a pool of strands (gray) we choose a subset (red) to form into braid.



N trajectories: 1 N-strand braid

#### 2N trajectories:

 ${2N \choose N} \sim 4^N$  N-strand braids



#### Rebraiding of 550 strands vs. naive sampling using 150k strands (200x more!):





