First passage time problems in stochastic hybrid systems

Paul C Bressloff¹

Collaborators: Jay Newby, Sean Lawley. Students: Heather Brooks, Ethan Levien, Bin Xu

¹Department of Mathematics, University of Utah

May 20, 2015

[A] BIDIRECTIONAL MOTOR-DRIVEN INTRACELLULAR TRANSPORT

[A] TUG-OF-WAR MODEL

- Let X(t) denote position of motor-cargo complex on MT track.
- Discrete state given by (n_+, n_-) where n_+ (n_-) is number of kinesin (dynein) motors bound to MT
- Let $v(n_+, n_-)$ be velocity of motor complex in state (n_+, n_-)
- Piecewise deterministic dynamics of motor complex is

$$\frac{dX}{dt} = v(n_+, n_-)$$

 Transitions between different states described by a jump Markov process (Klumpp et al)

[A] LOCAL SIGNALING AND AN ESCAPE PROBLEM (NEWBY/PCB 2010)

- MAPs (tau, MAP2) can bind to microtubules and reduce the binding rate of kinesin
- Provides a possible explanation for experimentally observed oscillatory motion of motor complexes
- Now have X-dependent velocities $v = v(n_+, n_-, X)$ and transition rates.

[B] STOCHASTIC ION CHANNELS AND VOLTAGE FLUCTUATIONS

 Single ion channels fluctuate rapidly between open and closed states in a stochastic fashion.

[B] STOCHASTIC CONDUCTANCE-BASED MODEL (PCB/Newby/Keener 2013)

- Suppose a neuron has $n \le N$ open Na⁺ channels and $m \le M$ open K⁺ channels
- \bullet Voltage V(t) evolves according to piecewise deterministic dynamics

$$\frac{dv}{dt} = F(v, m, n) \equiv \frac{n}{N} f_{Na}(v) + \frac{m}{M} f_K(v) - g(v).$$
with $f_i(v) = \bar{g}_i(v_i - v)$

Assume each channel satisfies the simple kinetic scheme

$$C(closed) \xrightarrow{\alpha_i(v)} O(open), \quad i = \text{Na, K},$$

 $\beta_i(v)$

Ion channel fluctuations can induce spontaneous action potentials.

[B] MORRIS-LECAR MODEL OF NEURAL EXCITABILITY

• In the limit of fast Na⁺ channels and infinite K⁺ channels ($M \to \infty$) we obtain the deterministic Morris-Lecar (ML) model

$$\frac{dv}{dt} = \frac{\alpha_{Na}(v)}{\alpha_{Na}(v) + \beta_{Na}(v)} f_{Na}(v) + w f_{K}(v) - g(v)$$

$$\frac{dw}{dt} = \alpha_{K}(v)(1 - w) - \beta_{K}(v)w,$$

- Examine excitability using slow/fast analysis
- Require large perturbations (rare events) to induce an action potential

[C] GENETIC SWITCHES/BISTABLE NEURAL NETWORKS

continuous variable = promoter protein concentration

discrete variable = state of promoter

continuous variables = synaptic currents in each population

discrete variables= number of spiking neuronsin each population

[D] ESCAPE FROM SUBCELLULAR DOMAINS WITH SWITCHING BOUNDARIES

- Diffusion of molecules within a subcellular domain Ω with stochastic channels in the membrane $\partial\Omega$
- Consider N narrow gates $\partial \Omega_k^{\varepsilon}$, $k \in \{1, ..., N\}$, with the kth gate given by the $\varepsilon > 0$ neighborhood of $\mathbf{x}_k \in \partial \Omega$ defined according to

$$\partial \Omega_k^{\varepsilon} := \{ \mathbf{x} \in \partial \Omega : |\mathbf{x} - \mathbf{x}_k| < \varepsilon \}.$$

• Let $\mathbf{n}(t) \in \{0,1\}^N$ be an irreducible Markov process whose k-th component, $n_k(t) \in \{0,1\}$, controls the state of the k-th gate.

Part II. Analysis of first passage time problems

1D STOCHASTIC HYBRID SYSTEM

Consider the 1D system

$$\frac{dx}{dt} = \frac{1}{\tau_x} F_n(x), \quad x \in \mathbb{R}, \quad n = 1, \dots, K$$

- Jump Markov process $m \to n$ with transition rates $W_{nm}(x)/\tau_n$.
- Set $\tau_x = 1$ and introduce the small parameter $\epsilon = \tau_n/\tau_x$
- Chapman-Kolmogorov (CK) equation for $p_n(x,t) = \mathbb{E}[p(x,t)1_{n(t)=n}]$ is

$$\frac{\partial p_n}{\partial t} = -\frac{\partial [F_n(x)p_n(x,t)]}{\partial x} + \frac{1}{\epsilon} \sum_{m=1}^K A_{nm}(x)p_m(x,t)$$

where

$$A_{nm}(x) = W_{nm}(x) - \sum_{k=1}^{K} W_{kn}(x) \delta_{m,n}.$$

• Assume that there exists a unique stationary density $\rho_n(x)$ with

$$\sum_{m} A_{nm}(x) \rho_m(x) = 0$$

QUASI-STEADY-STATE APPROXIMATION (PCB/NEWBY)

• In the limit $\epsilon \to 0$, obtain mean-field equation

$$\frac{dx}{dt} = \mathcal{F}(x) \equiv \sum_{n=1}^{K} F_n(x) \rho_n(x),$$

Decompose the probability density as

$$p(x,n,t) = C(x,t)\rho_n(x) + \epsilon w_n(x,t),$$
 where $\sum_n p_n(x,t) = C(x,t)$ and $\sum_n w_n(x,t) = 0$.

• Asymptotic expansion in ϵ yields FP equation

$$\frac{\partial C}{\partial t} = -\frac{\partial}{\partial x}(\mathcal{F}C) + \epsilon \frac{\partial}{\partial x} \left(\mathcal{D} \frac{\partial C}{\partial x} \right),$$

Drift term given by mean-field equation, and diffusion coefficient

$$\mathcal{D}(x) = \sum_{n} Z_n(x) F_n(x),$$

where

$$\sum_{m} A_{nm}(x) Z_m(x) = -[\mathcal{F}(x) - F_n(x)] \rho_n(x)$$

7

FIRST-PASSAGE TIME (FTP) PROBLEM I

Suppose that mean field equation is bistable

- Let T(x) be the stochastic time for the particle to exit at x_0 starting at x
- Introduce the survival probability $\mathbb{P}(x,t)$ that the particle has not yet exited at time t:

$$\mathbb{P}(x,t) = \int_0^{x_0} \sum_n p_n(x',t|x,0) dx'.$$

and define the first passage time (FPT) density

$$f(x,t) = -\frac{\partial \mathbb{P}(x,t)}{\partial t}.$$

FIRST-PASSAGE TIME (FTP) PROBLEM II

• The mean first passage time (MFPT) $\tau(x)$ is

$$\tau(x) = \langle T(x) \rangle \equiv \int_0^\infty f(x,t)tdt = \int_0^\infty \mathbb{P}(x,t)dt,$$

• In limit $\epsilon \to 0$, expect MFPT to have the Arrhenius-like form

$$\tau(x_{-}) = \frac{2\pi\Gamma(x_{0}, x_{-})}{\sqrt{|\Phi''(x_{0})|\Phi''(x_{-})}} e^{[\Phi(x_{0}) - \Phi(x_{-})]/\epsilon}.$$

where $\Phi(x)$ is a **quasipotential** and Γ is a prefactor.

QSS approximation yields the approximate quasipotential

$$\Phi_{\rm QSS}(x) \equiv -\int^x \frac{\mathcal{F}(x')}{\mathcal{D}(x')} dx'$$

- ⇒ may generate exponentially large errors in MFPT
- FP equation is 2nd-order, whereas CK equation is K-th order ⇒ QSS can breakdown at boundaries

PATH-INTEGRAL REPRESENTATION (PCB/Newby 2014)

- Determine $\Phi(x)$ using large deviation theory/path integrals/WKB
- Consider the eigenvalue equation

$$\sum_{m} [A_{nm}(x) + q\delta_{n,m}F_{m}(x)] R_{m}^{(s)}(x,q) = \lambda_{s}(x,q)R_{n}^{(s)}(x,q),$$

and let $\xi_m^{(s)}$ be the adjoint eigenvector.

- Perron-Frobenius theorem shows that there exists a real, simple Perron eigenvalue labeled by s = 0, say, such that $\lambda_0 > \text{Re}(\lambda_s)$ for all s > 0
- Path-integral representation of PDF

$$P(x,\tau) = \int_{x(0)=x_*}^{x(\tau)=x} \exp\left(-\frac{1}{\epsilon} \int_0^{\tau} [p\dot{x} - \lambda_0(x,p)]dt\right) \mathcal{D}[p]\mathcal{D}[x]$$

"ZERO ENERGY" PATHS

- (a) Deterministic trajectories converging to a stable fixed point x_s . Boundary of basin of attraction formed by a union of separatrices
- (b) Noise-induced paths of escape

MEAN-FIELD EQUATIONS

• We have the trivial solution p = 0 and $R_m^{(0)}(x, 0) = \rho_m(x)$ with

$$\sum_{m} A_{nm}(x) \rho_m(x) = 0$$

• Differentiating the eigenvalue equation with respect to p and then setting p = 0, $\lambda_0 = 0$ shows that

$$\frac{\partial \lambda_0(x,p)}{\partial p}\bigg|_{p=0} \rho_n(x) = F_n(x)\rho_n(x) + \sum_m A_{nm}(x) \left. \frac{\partial R_m^{(0)}(x,p)}{\partial p} \right|_{p=0}$$

• Summing both sides wrt *n* and using $\sum_{n} A_{nm} = 0$,

$$\frac{\partial \lambda_0(x)}{\partial p}\bigg|_{p=0} = \sum_n F_n(x) \rho_n(x)$$

• Hamilton's equation $\dot{x} = \partial \lambda_0(x, p)/\partial p$ recovers mean-field equation

$$\dot{x} = \sum_{n} F_n(x) \rho_n(x).$$

MAXIMUM-LIKELIHOOD PATHS OF ESCAPE

• Unique non-trivial solution $p = \mu(x)$ with positive eigenvector $R_m^{(0)}(x, \mu(x)) = \psi_m(x)$:

$$\sum_{m} \left[A_{nm}(x) + \mu(x) \delta_{n,m} F_m(x) \right] \psi_m(x) = 0$$

• Yields quasipotential $\Phi(x)$ with $\Phi'(x) = \mu(x)$ and

$$S[x,p] \equiv \int_{-\infty}^{\tau} \left[p\dot{x} - \lambda_0(x,p) \right] dt = \int_{x_s}^{x} \Phi'(x) dx.$$

 Equivalent to WKB quasipotential obtained using ansatz for quasistationary solutions

$$p_n(x) = R_n(x) \exp\left(-\frac{1}{\epsilon}\Phi(x)\right),$$

Part III. Stochastic ion-channels revisited

REDUCED MORRIS-LECAR MODEL

• Let n, n = 0, ..., N be the number of open sodium channels:

$$\frac{dv}{dt} = F_n(v) \equiv \frac{1}{N} f(v) n - g(v),$$
 with $f(v) = g_{Na}(V_{Na} - v)$ and $g(v) = -g_{eff}[V_{eff} - v] + I_{ext}$.

 The opening and closing of the ion channels is described by a birth-death process according to

$$n \rightarrow n \pm 1$$
,

with rates

$$\omega_{+}(n) = \alpha(v)(N-n), \quad \omega_{-}(n) = \beta n$$

Take

$$\alpha(v) = \beta \exp\left(\frac{2(v - v_1)}{v_2}\right)$$

for constants β , v_1 , v_2 .

CHAPMAN-KOLMOGOROV EQUATION

CK equation is

$$\frac{\partial p_n}{\partial t} = -\frac{\partial [F_n(v)p_n(v,t)]}{\partial v} + \frac{1}{\epsilon} \sum_{n'} A_{nm}(v)p_m(v,t),$$

$$A_{n,n-1} = \omega_+(n-1), A_{nn} = -\omega_+(n) - \omega_-(n), A_{n,n+1} = \omega_-(n+1).$$

• There exists a unique steady state density $\rho_n(v)$ for which

$$\sum_{m} A_{nm}(v) \rho_m(v) = 0$$

where

$$\rho_n(v) = \frac{N!}{(N-n)!n!} a(v)^n b(v)^{N-n}, \quad a(v) = \frac{\alpha(v)}{\alpha(v) + \beta}, \ b(v) = 1 - a(v).$$

MEAN-FIELD LIMIT

• In the limit $\epsilon \to 0$, we obtain the mean-field equation

$$\frac{dv}{dt} = \sum_{n} F_n(v) \rho_n(v) = a(v) f(v) - g(v) \equiv -\frac{d\Psi}{dv},$$

Assume deterministic system operates in a bistable regime

PERRON EIGENVALUE I

• Eigenvalue equation for λ_0 and $R^{(0)} = \psi$:

$$(N - n + 1)\alpha\psi_{n-1} - [\lambda_0 + n\beta + (N - n)\alpha]\psi_n + (n + 1)\beta\psi_{n+1}$$
$$= -p\left(\frac{n}{N}f - g\right)\psi_n$$

Consider the trial solution

$$\psi_n(x,p) = \frac{\Lambda(x,p)^n}{(N-n)!n!},$$

• Yields the following equation relating Λ and μ :

$$\frac{n\alpha}{\Lambda} + \Lambda\beta(N-n) - \lambda_0 - n\beta - (N-n)\alpha = -p\left(\frac{n}{N}f - g\right).$$

Collecting terms independent of n and terms linear in n yields

$$p = -\frac{N}{f(x)} \left(\frac{1}{\Lambda(x,p)} + 1 \right) (\alpha(x) - \beta(x)\Lambda(x,p)),$$

and

$$\lambda_0(x,p) = -N(\alpha(x) - \Lambda(x,p)\beta(x)) - pg(x).$$

THE QUASIPOTENTIAL

Non-trivial solution ryields

$$p = \mu(x) \equiv N \frac{\alpha(x)f(x) - (\alpha(x) + \beta)g(x)}{g(x)(f(x) - g(x))}.$$

ullet The corresponding quasipotential Φ is given by

$$\Phi(x) = \int_{-\infty}^{x} \mu(y) dy.$$

Analogous result in full ML model

STOCHASTIC MORRIS-LECAR MODEL

• Take $n \le N$ open Na⁺ channels and $m \le M$ open K⁺ channels:

$$\frac{dv}{dt} = F(v, m, n) \equiv \frac{n}{N} f_{Na}(v) + \frac{m}{M} f_K(v) - g(v).$$

Each channel satisfies the kinetic scheme

$$C \underset{\beta_i(v)}{\overset{\alpha_i(v)}{\rightleftharpoons}} O, \quad i = \text{Na, K},$$

- The Na⁺ channels fast relative to voltage and K⁺ dynamics.
- Chapman–Kolmogorov (CK) equation,

$$\frac{\partial p}{\partial t} = -\frac{\partial (Fp)}{\partial v} + \mathbb{L}_{K}p + \mathbb{L}_{Na}p.$$

• The jump operators \mathbb{L}_j , j = Na, K, are defined according to

$$\mathbb{L}_j = (\mathbb{E}_n^+ - 1)\omega_j^+(n) + (\mathbb{E}_n^- - 1)\omega_j^-(n),$$
 with $\mathbb{E}_n^{\pm} f(n) = f(n \pm 1)$, $\omega_i^-(n) = n\beta_i$ and $\omega_i^+(n) = (N - n)\alpha_i(v)$.

STOCHASTIC MORRIS-LECAR MODEL

• Take $n \le N$ open Na⁺ channels and $m \le M$ open K⁺ channels:

$$\frac{dv}{dt} = F(v, m, n) \equiv \frac{n}{N} f_{Na}(v) + \frac{m}{M} f_K(v) - g(v).$$

Each channel satisfies the kinetic scheme

$$C \underset{\beta_i(v)}{\overset{\alpha_i(v)}{\rightleftharpoons}} O, \quad i = \text{Na, K},$$

- The Na⁺ channels fast relative to voltage and K⁺ dynamics.
- Chapman–Kolmogorov (CK) equation,

$$\frac{\partial p}{\partial t} = -\frac{\partial (Fp)}{\partial v} + \mathbb{L}_{K}p + \mathbb{L}_{Na}p.$$

• The jump operators \mathbb{L}_j , j = Na, K, are defined according to

$$\mathbb{L}_j = (\mathbb{E}_n^+ - 1)\omega_j^+(n) + (\mathbb{E}_n^- - 1)\omega_j^-(n),$$
 with $\mathbb{E}_n^{\pm} f(n) = f(n \pm 1)$, $\omega_i^-(n) = n\beta_i$ and $\omega_i^+(n) = (N - n)\alpha_i(v)$.

WKB APPROXIMATION

Introduce quasistationary solution of the form

$$\varphi(v, w, n) = R_n(v, w) \exp\left(-\frac{1}{\epsilon}\Phi(v, w)\right),$$

where $\Phi(v, w)$ is the **quasipotential**

To leading order,

$$[\mathbb{L}_{Na} + p_v + h(v, w, p_w)] R_n(v, w) = 0,$$

where

$$p_v = \frac{\partial \Phi}{\partial v}, \quad p_w = \frac{\partial \Phi}{\partial w}$$

and

$$h(v, w, p_w) = \frac{\beta_K}{M\lambda_M} \left[(e^{-\lambda_M p_w} - 1)\omega_K^+(Mw, v) + (e^{\lambda_M p_w} - 1)\omega_K^-(Mw, v) \right]$$