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[A] BIDIRECTIONAL MOTOR-DRIVEN INTRACELLULAR TRANSPORT
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eg. mRNA transport along dendrites




[A] TUG-OF-WAR MODEL

@ Let X(f) denote position of motor-cargo complex on MT track.

@ Discrete state given by (n,n_) where ny (n_) is number of kinesin
(dynein) motors bound to MT

@ Letv(ny,n_) be velocity of motor complex in state (n4,1_)

@ Piecewise deterministic dynamics of motor complex is

dX

— —ov(ny.n_
T o(n+ )

@ Transitions between different states described by a jump Markov process
(Klumpp et al)
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[A] LOCAL SIGNALING AND AN ESCAPE PROBLEM (Newsy/PCB 2010)
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@ MAPs (tau, MAP2) can bind to microtubules and reduce the binding rate
of kinesin

@ Provides a possible explanation for experimentally observed oscillatory
motion of motor complexes

@ Now have X-dependent velocities v = v(ny,n_, X) and transition rates.
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[B] STOCHASTIC ION CHANNELS AND VOLTAGE FLUCTUATIONS

@ Single ion channels fluctuate rapidly between open and closed states in a
stochastic fashion.
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[B] STOCHASTIC CONDUCTANCE-BASED MODEL (PCB/NEWBY/KEENER 2013)

@ Suppose a neuron has n < N open Na™ channels and m < M open K™
channels

@ Voltage V(t) evolves according to piecewise deterministic dynamics

dv
dt
with fi(v) = gi(vi — v)

@ Assume each channel satisfies the simple kinetic scheme

fwa(0) + Tfic(0) — 2(0).

=F(o,m.n) =

a;(7)
C(closed) — Of(open), i=Na, K,
3,’(2‘)

@ Jon channel fluctuations can induce spontaneous action potentials.
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[B] MORRIS-LECAR MODEL OF NEURAL EXCITABILITY

@ In the limit of fast Na™ channels and infinite K™ channels (M — oc0) we
obtain the deterministic Morris-Lecar (ML) model

dv QNa () o N oz
i~ aml(o) + Baey @) T k(@) —5(0)

dw

e ax(v)(1 — w) — Bx(v)w,

@ Examine excitability using slow /fast analysis
@ Require large perturbations (rare events) to induce an action potential
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[C] GENETIC SWITCHES/ BISTABLE NEURAL NETWORKS

continuous variable
= promoter protein concentration

discrete variable
= state of promoter

a C
WE
continuous variables
= synaptic currents in
b

each population

discrete variables
= number of spiking neurons
in each population




[D] ESCAPE FROM SUBCELLULAR DOMAINS WITH SWITCHING
BOUNDARIES
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@ Diffusion of molecules within a subcellular domain (2 with stochastic
channels in the membrane 90f2

@ Consider N narrow gates 9€), k € {1,..., N}, with the kth gate given by
the £ > 0 neighborhood of x; € 9€2 defined according to

oY ={x€IN: |x—x| < ¢}

e Letn(t) € {0,1}" be an irreducible Markov process whose k-th
component, 1;(t) € {0, 1}, controls the state of the k-th gate.
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Part II. Analysis of first passage time problems




1D STOCHASTIC HYBRID SYSTEM
e Consider the 1D system

- = lF,,(x). rclR, mn=—%___ K
lit Tx

@ Jump Markov process m — n with transition rates W, (x)/7x.
@ Set . = 1 and introduce the small parameter € = 7, /7%

@ Chapman-Kolmogorov (CK) equation for p,(x,t) = E[p(x, t)1,)=x] is

" . K
Opn  O[Fa(x)pa(x,t)] 1 i ‘
e = == ;Anm(.x)pm(.x. t)
where
K
Anm( ) — I/\'fnm( \) Z Wkn(x)dm.n-
=

@ Assume that there exists a unique stationary density p,(x) with

Z Anm pm ( \




QUASI-STEADY-STATE APPROXIMATION (PCB/NEWBY)
@ In the limit € — 0, obtain mean-field equation

‘:l,_—: = ZFH pn

n—3

@ Decompose the probability density as

p(x,n,t) = C(x,t)pa(x) + ewn(x,t),
where Y pn(x,t) = C(x,t) and >, wa(x,t) =0.

@ Asymptotic expansion in € yields FP equation

aC d 2, oC
e e - C = D— s
ot Ox e Ox < Ox )

@ Drift term given by mean-field equation, and diffusion coefficient

=Y Za(x)F

where

ZAnm(,x)Zm(x) — _[F(Y) s Fn(x)]/)n(x)




FIRST-PASSAGE TIME (FTP) PROBLEM I

@ Suppose that mean field equation is bistable

@ Let T(x) be the stochastic time for the particle to exit at x¢ starting at x

@ Introduce the survival probability P(x, ) that the particle has not yet
exited at time ¢:

P(x.t) = /'U (. tx., 0)dx’.
J > |

n

and define the first passage time (FPT) density
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. ot

]




FIRST-PASSAGE TIME (FTP) PROBLEM II

@ The mean first passage time (MFPT) 7(x) is

T{x)—(Ex)) E/ f(x, t)tdt :/ P(x,t)dt,
0 0

@ In limit e — 0, expect MFPT to have the Arrhenius-like form

27l (x0., x—
- o) -]

@(xg)—d)(x__)]/e'
V[ (x0)| D" (x—)

where ®(x) is a quasipotential and I' is a prefactor.

@ QSS approximation yields the approximate quasipotential

| = Fixd) . ,
Poss(x) = —/ Dil,;dx

— may generate exponentially large errors in MFPT

@ FP equation is 2nd-order, whereas CK equation is K-th order — QSS
can breakdown at boundaries
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PATH-INTEGRAL REPRESENTATION (PCB/NEWBY 2014)

@ Determine ®(x) using large deviation theory /path integrals/ WKB

@ Consider the eigenvalue equation

X.lx q_)R,(,S) (x,q),

e
E 50
,‘:.
-

|

Z [Anm(x) T ‘ldn.mFm(x)]

m

and let & be the adjoint eigenvector.

@ Perron-Frobenius theorem shows that there exists a real, simple Perron
eigenvalue labeled by s = 0, say, such that A¢ > Re() foralls > 0

@ Path-integral representation of PDF

xt7)==

858y = / exp <—1/ [px — /\o(.\‘.p)}dt> D|p|D|x]
€Jo

x(0)=x.
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“ZERO ENERGY"” PATHS

Q2

(a) Deterministic trajectories converging to a stable fixed point xs.
Boundary of basin of attraction formed by a union of separatrices

(b) Noise-induced paths of escape
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MEAN-FIELD EQUATIONS

@ We have the trivial solution p = 0 and R (x,0) = pm (x) with

ZAnm(-\‘)l)m(x) —

e Differentiating the eigenvalue equation with respect to p and then
setting p = 0, Ao = 0 shows that

INo(x,p) | @p,('?) .
PEDE b = Fa(x)pn(x) + Y Aum(x) — (%)
p=0 = op -

op
@ Summing both sides wrt n and using ) © Aum =0,

I Ao (x)
- n /n
R SLCY

op lp=0

@ Hamilton’s equation x = dAo(x, p)/Ip recovers mean-field equation

e YT
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MAXIMUM-LIKELIHOOD PATHS OF ESCAPE

@ Unique non-trivial solution p = p(x) with positive eigenvector
0 ,
Ry (x, 1(x)) = thm(x):

Z [Anm(x) a2 ,U(-\')(Sn.ml:m(x)] Um(x) =0

@ Yields quasipotential ®(x) with ®'(x) = p(x) and

Slx,p] = / [px — Xo(x,p)] dt = / ®’ (x)dx.

e Equivalent to WKB quasipotential obtained using ansatz for
quasistationary solutions

pn(x) = Ra(x) exp (—l(b(x)) :

1L




Part ]

. Stochastic ion-channels revisited




REDUCED MORRIS-LECAR MODEL

@ Letn,n=0,...,N be the number of open sodium channels:

dov - _l-_, .
E—F,,(t):i\]f(t)’l &(()
with f(v) = gna(VNa — ) and (v) = —Qest[Vesr — ©] + Lext-

@ The opening and closing of the ion channels is described by a
birth-death process according to

n—ntl,
with rates
wy(n) =al(v)(N—n), w_(n)=_pFn
e Take

2(o — v
a(z'):.iexp<_( - 1)>

02

for constants 3. vy, vs.
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CHAPMAN-KOLMOGOROV EQUATION

@ CKequation is

(3}7,1 | = (3[1:,,(0 p,, 0,
An n—1 — W*(” — 1) Ann — _v"—r—(’l) = UJ—(_”)- An n+1 — W—(” + 1)
@ There exists a unique steady state density p,(v) for which
Z Anm( U)Pm(z’) —-"
where
N!
Pn(z’) —
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MEAN-FIELD LIMIT

@ In the limit e — 0, we obtain the mean-field equation

dW

do

= Eal0)pa(0) = a(0)f (0) — g(v) =

@ Assume deterministic system operates in a bistable regime

-100 -80 -60 40 20 0 20 40 60 80 100
v[mV]

do’
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PERRON EIGENVALUE I

e Eigenvalue equation for \g and R = v

(N —n+1)arky—1 — [Ao + 18+ (N —n)alty + (n + 1) 81+
n
——p (Nf —g) Wn

@ Consider the trial solution

A(x,p)"
(N —n)'n!’

z,',,(x,p) —
@ Yields the following equation relating A and

% +AB(N —n) —Xg—nB— (N —n)a=—p (%f —g) .

@ Collecting terms independent of 7 and terms linear in 7 yields

N 1 % N
p=—"r (-\(.\‘.p) — 1> (a(x) — B(x)A(x,p)) .

and

Ao(x,p) = —N(a(x) — A(x,p)B(x)) — pg(x).




THE QUASIPOTENTIAL

@ Non-trivial solution ryields

p=up(x) =N

a(x)f (x) — (a(x) + B)g(x

g(x)(f(x) — g(x))
@ The corresponding quasipotential ® is given by

P(x) = / p(y)dy.
@ Analogous result in full ML model

)
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do
=F(o.m.n) = —
(o,m.n) N

STOCHASTIC MORRIS-LECAR MODEL
@ Take n < N open Na™ channels and m < M open K™ channels:
m
/k(0) — &)

,‘” f}\rd ( Z’) + M

dt

e O F

@ Each channel satisfies the kinetic scheme
a;(7)
i —=Na K.

B: (o)

@ The Na™ channels fast relative to voltage and K™ dynamics.
¥ EAI( P + ]LNap-

op - J(Fp)
8t~ dv

@ Chapman-Kolmogorov (CK) equation,

ot

@ The jump operators L, ] = Na, K, are defined according to
— 1Dw: (n),

L,‘ — (E,T — 1)»4-’7'*(”) . (En-

with EXf(n) =f(n £ 1), wj_(n) = nB,- and wj+(n) = (N — n)a;(v)
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do
=F(o.m.n) = —
(o,m.n) N

STOCHASTIC MORRIS-LECAR MODEL
@ Take n < N open Na™ channels and m < M open K™ channels:
m
/k(0) — &)

,‘” f}\rd ( Z’) + M

dt

e O F

@ Each channel satisfies the kinetic scheme
a;(7)
i —=Na K.

B: (o)

@ The Na™ channels fast relative to voltage and K™ dynamics.
¥ EAI( P + ]LNap-

op - J(Fp)
8t~ dv

@ Chapman-Kolmogorov (CK) equation,

ot

@ The jump operators L, ] = Na, K, are defined according to
— 1Dw: (n),

L,‘ — (E,T — 1)»4-’7'*(”) . (En-

with EXf(n) =f(n £ 1), wj_(n) = nB,- and wj+(n) = (N — n)a;(v)
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WKDB APPROXIMATION

@ Introduce quasistationary solution of the form
1
p(v,w,n) = R,(v, w) exp (——(I)(v.w)) :
=

where ®(v, w) is the quasipotential

@ To leading order,

[Lna + po + h(0, w, pw)] Ru(v, w) = 0,
where

oD oD
Yy — — - b ————
Pe oo e ow

and

3 =3 g ) 3 — '
h(v, w, pw) = M:M [(e AMPw _ 1)wg (Mw, v) + (eAM"" — 1wy (Mw, z,r)J
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