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wandering traps may die

fixed target

wandering traps
may diffuse of subdiffuse



The question

Survival probability of the target? %‘i‘%

The answer depends on TARGET

Is target FIXED or does it move!? o @

Dimension d=1,2,3

How traps move diffusive or subdiffusive

How traps die evanescence



Lesson when there is one target and many traps

If the traps live forever, the target certainly dies
whether the traps diffuse or subdiffuse

If the traps die sufficiently rapidly, the target may
survive whether the traps diffuse or subdiffuse

How fast the target dies in those cases where it
dies is affected by diffusion vs subdiffusion

Al TARGET
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Macromolecular crowding in living cells (from R. Metzler)

SR McGuffee & AH Elcock, PLoS Comp Biol (2010)



P(x,t): Prob. find
particle at x at 7
V concentration

Subiffusion (e.g. crowded environment)

) ~t7] 0<y<l

Equation: see below

Diffusion
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One approach: CTRW —  Fractional diffusion equation

Long-tailed waiting time distribution, jump length distribution of finite variance

First: NO evanescence, ONE trap el £ //\
~
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When a trap reaches the target, both die

Target dies as

Target dies as

Target lives
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Now: EVANESCENT traps

Density p(t), p(0) =1

Exponential evanescence

p(t) = po exp(—At) K

Power law evanescence

Po ,
) =
(t) (1+ At)P —




EVANESCENT TRAPS
In our model, trap evanescence process is
,0( # ) S Y (t ) ,0( t) independent of trap reaction with target

How to combine with fractional
diffusion equation?

Can not just add!" @
SINGLE TRAP
ow(r,t|re,0)  p(t) . PO 2 p(t)
ot — [)—()I ~ uD /)(_I)V (r.t|ro,0) +/)(—f)ll(l tirg.0)

As before Q7(rg.t: R) = /(11‘ w(r, t|re: 0)
But now survival probability of the target and the trap are no longer the same

Qi r(r,t: R) = Qi (7, t; R)—/ dt’ Qi (r,t'; R)/E:;




MANY TRAPS

If traps can die, what is the
survival probability of the target ?

Q7 (t: R) = exp [—poR"c*(t. R)]
o (t. R) depends on the rate of evanescence

Exponential evanescence p(t) = po exp(—At)

The survival probability is finite in all dimensions for one
or even for many traps!




MANY TRAPS
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Exponential evanescence @ @YK

The survival probability of the target is finite in all
dimensions for one or even for many traps!

@  The decay of the survival probability to the final state is faster as dimensionality increases

0 The decay of the survival probability to the final state is slowed by subdiffusion

0 The final survival probability is increased by subdiffusion

(0] The limit of no evanescence is singular



MANY TRAPS
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If traps can die, what is the O
survival probability of the target ? :? Ay T @

Q7 (t; R) = exp [—poR%0*(t, R)]

o (t, R) depends on the rate of evanescence

Power law evanescence p(t) = (1 _:_0 (z\t)ﬁ

More intricate dependence on parameters and dimension



MANY TRAPS

If traps can die, what is the ‘x ‘ R
survival probability of the target ? © *o 22
Sz~ Qﬁ\g}
Power law evanescence — — p(t) = Po |
(14 At)?
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Survival probability of target is finite if 3 > /2

Otherwise survival probability of target goes to zero



MANY TRAPS
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If traps can die, what is the ;&"7 i
survival probability of the target ? ‘ .
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Power law evanescence

0
Pl = Ty

d =1 Survival probability of target is finite if 3 > /2

d = 2,3 Survival probability of target is finite if 3 > ~

Otherwise survival probability of target goes to zero



Lesson when there is one target and many traps

If the traps live forever, the target certainly dies
whether the traps diffuse or subdiffuse

If the traps die sufficiently rapidly, the target may
survive whether the traps diffuse or subdiffuse

How fast the target dies in those cases where it
dies is affected by diffusion vs subdiffusion

More detailed summary ;& \
All very logical! .




Without evanescence
|. Single trap: subdiffusive character only matters

in d=I.Target dies for sure but it takes longer ‘
with subdiffusion than ordinary diffusion. TARGET
©
2. Single trap when d=2: target dies for sure, marginally

slowed down with subdiffusion

3. Single trap when d=3: target may survive!
Subdiffusion does not affect survival probability

TARGET

TARGET



Without evanescence

|. Single trap: subdiffusive character only matters
in d=1.Target dies for sure but it takes longer O
with subdiffusion than ordinary diffusion.

2. Single trap when d=2: target dies for sure, marginally TARGET
slowed down with subdiffusion

3.Single trap when d=3: target may survive!
Subdiffusion does not affect survival probability

4. Many traps: survival probability of target goes to zero
in all dimensions, more slowly with subdiffusing than
with diffusing traps.
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With evanescence

"y %//
Completely modifies behavior ;&b ‘ i
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Exponem_:ial evanescence

| . Single trap: target may survive in all dimensions

2. Many traps: target may still survive in all dimensions

Asymptotic survival probability increased by subdiffusion (traps die
before getting to target) but approach to asymptotia is slower



With evanescence

Completely modifies behavior % ‘ i#

TARGET

Power law evanescence 47;\"\/ ‘gﬁg

| Single trap: target may survive in all dimensions
only if power law decay is sufficiently rapid

2. Many traps: target may still survive in all dimensions if
power law decay is sufficiently rapid

Asymptotic survival probability increased by subdiffusion (traps die
before getting to target) but approach to asymptotia is slower



A totally different approach to the same results:

There is a well-known relation between first
passage times and distinct number of sites visited
as a function of time for DIFFUSION problems

We showed that this relation also holds for SUBDIFFUSION

We calculated distinct number of sites visited for
SUBDIFFUSION



