Minisymposium 110: Effective multiscale computational
modeling of spatio-temporal systems

1. Better buffers for patches in macroscale simulation of systems with

microscale randomness
Tony Roberts, Judy Bunder, and Yannis Kevrekidis

2. Resilient algorithms for reconstructing and simulating gappy flow
fields in CFD
Seungjoon Lee and George Em. Karniadakis

3. Triggers of rogue waves in deep water envelope equations
Will Cousins and Themistoklis Sapsis

4. Data fusion via intrinsic variables
Matt Williams for Yannis Kevrekidis




Better buffers for patches in macroscale simulation of
systems with microscale randomness

Prof Tony Roberts, Judith Bunder! and Yannis Kevrekidis
University of Adelaide and Princeton University

May 20, 2015

'Funded by the Australian Research Council



]
Schematic overview

Schematic

We have an ‘atomistic’/‘agent’ based computational model. overview

Its computations predict evolution in space-time: /arge.
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Assume the computation is far too expensive over desired space domain.

Instead, restrict computation to small microscale patches of space.
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How do we couple patches for a coherent macroscale prediction?




T
To couple, choose macroscale variable, say U

Schematic

Define macroscale values U;(t) as average over core of jth patch. g -
Ui (t) Uz(t) Us(t)
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To couple, choose macroscale variable, say U

Schematic
overview

Define macroscale values U;(t) as average over core of jth patch.

Ur(t) Uz(t) Us(t) |
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Then couple patches via some interpolation of U(t) by applying control
over action regions.
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Challenges: what interpolation?  how big are the core and action
regions?




Answer for interpolation

Answers

If the macroscale variable(s) chosen correctly, then there exists a sound
smooth macroscale closure for field U(x, t):

=R .. )

For such an in-principle closure, previous research established classic
Lagrangian interpolation is good: (‘)(HP) in patch spacing H.

» A. J. Roberts and |. G. Kevrekidis. General tooth boundary

conditions for equation free modelling. SIAM J. Scientific
Computing, 29(4):1495-1510, 2007.

» M. Cao and A. J. Roberts. Multiscale modelling couples patches of
non-linear wave-like simulations.

[bttp://http://arxiv.org/abs/1404.6317], 2014.




Propose answer for core and action regions

Answers

Make each of the cores and action regions from a third to a half of their
patch.

The best buffer is none at all!




Discuss 1D, but multi-D appears OK

u(x,y.t) at t=05.0000 u(x.y.t) at t=05.0000 1D, but nD OK

u(x,yt)

Simulations of 2D lattice diffusion with varying microscale diffusivity:
(left) ensemble average of u(x, y, t) for patch dynamics; and

(right) u(x, y, t) simulated on all space for one diffusivity realisation
(colours marking the patches used in the left scheme).




Homogenise microscale varying 1D diffusion

Why? Mesoscale diffusion is emergent from a wide variety of microscale
problems. We can and do fully analyse microscale diffusion. Homogenise

microscale varying
1D diffusion




Homogenise microscale varying 1D diffusion

Why? Mesoscale diffusion is emergent from a wide variety of microscale
problems. We can and do fully analyse microscale diffusion. Homogenise
microscale varying

1D diffusion
Consider diffusion for the field u;(t) on a 1D micro-lattice:
i = du;/dt = Kjy1/2(Uiv1 — Ui)) /0 + Ki_12(uim1 — u;)/P* (1)

where diffusivities k; cycle through K values ( K-periodic).

up Uz U3 Ug Us Ue U7 Ug Ug Ujg Uyl U2 U13 Ujgq Ups Uje U7 Ul X
1 | 1 | 1 | | | | >

| |

| | | |




Analyse ensemble average predictions

Expect the phase of the microscale diffusivities is unknown, so analyse
ensemble average over different configurations of microscale.

The microscale lattice has spacing h. The macroscale lattice has
spacing H. The jth patch of width (2n + 1)h about the macroscale e —
lattice point X;, indicated by the shaded rectangles.
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For example of (K = 4)-periodic diffusivities, the ensemble contains
2K = 8 configurations: the four with translation symmetry are
illustrated; the remaining are reflections.




Propose answer for core and action regions

Answers

Make each of the cores and action regions from a third to a half of their
patch.

The best buffer is none at all!




To couple, choose macroscale variable, say U

Schematic
overview

Define macroscale values U;(t) as average over core of jth patch.

Ur(t) Ua(t) Us(t) ]
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Then couple patches via some interpolation of U(t) by applying control
over action regions.
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Challenges: what interpolation?  how big are the core and action
regions?




Discuss 1D, but multi-D appears OK

u(x,y,t) at t=05.0000 u(x,y.t) at t=05.0000 1D. but nD OK

u(x,y.t)

Simulations of 2D lattice diffusion with varying microscale diffusivity:
(left) ensemble average of u(x, y, t) for patch dynamics; and

(right) u(x, y, t) simulated on all space for one diffusivity realisation
(colours marking the patches used in the left scheme).




Homogenise microscale varying 1D diffusion

Why? Mesoscale diffusion is emergent from a wide variety of microscale
Homogenise

problems. We can and do fully analyse microscale diffusion.
microscale varying
1D diffusion

Consider diffusion for the field u;(t) on a 1D micro-lattice:
Ui = duj/dt = K1 /2(Uiv1 — ui) /B + Ki_12(Uim1 — u)/H* (1)

where diffusivities k; cycle through K values ( K-periodic).
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Model by U;(t) on a macroscale grid X; of large spacing H by only
simulating on microscale patches.

Challenge: couple patches when microscale diffusivity fluctuates?




Analyse ensemble average predictions

Expect the phase of the microscale diffusivities is unknown, so analyse
ensemble average over different configurations of microscale.

The microscale lattice has spacing h. The macroscale lattice has
spacing H. The jth patch of width (2n + 1)h about the macroscale e —
lattice point X;, indicated by the shaded rectangles.
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For example of (K = 4)-periodic diffusivities, the ensemble contains
2K = 8 configurations: the four with translation symmetry are
illustrated; the remaining are reflections.




Full microscale emergent dynamics is the reference

Linear analysis gives slow emergent dynamics on the macroscale as

o K 2 K2_1_C2(E)K2 4 ' 6
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Full microscale
dynamics

where Kk is harmonic average diffusivity (well-established),

K K K —1
2) Kg ma (K — mp)
= I I Ki, and C2 K 7 E i

K Kml-um?

=1 m;=1 my=1
depends upon the ordering.

This result follows by writing dii/dt = Mii/h? for a K x K operator
matrix representing both a period and the operator coupling with
neighbouring periods. The ‘smallest’ eigenvalue of M, of its

K eigenvalues, gives (2).




Patch dynamics: core and coupling

Adjoin to microscale lattice equation (1) the macroscale

Ui(t) = U(X;, t) = < b 2 2‘:’+1> . (3)

I—=—C

where angle brackets represent ensemble average over all

configurations e, and integer c is the core half-width. Patch dynamics
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In terms of microscale shift operator €, Lagrangian coupling is

n
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Patch dynamics: evolution

Lattice equation (1), core average (3), and coupling (4) form a closed
system for the patch simulation of diffusion with microscale

heterogeneities.

Patch dynamics

Consistency: obtain various orders of accuracy in the macroscale
spacing H by truncating the expansion of the coupling term ¢
to interactions with the nearest I' neighbours.

:t(n—c)Uj




Patch dynamics: evolution

Lattice equation (1), core average (3), and coupling (4) form a closed
system for the patch simulation of diffusion with microscale
heterogeneities.

Consistency: obtain various orders of accuracy in the macroscale Patch dynamics
spacing H by truncating the expansion of the coupling term ¢=("—¢) U
to interactions with the nearest I’ neighbours.

Patch design The emergent slow dynamics of the patch scheme is
also findable as dU/dt = AqU/h? for some operator Ag that depends
upon I', K, the ratio r = h/H, and the patch design n and c.

Errors: the error in the patch scheme is the difference between the
leading part of Ag and the corresponding part of the exact (2).
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The coefficient error is minimised when ¢ =~ n/2.

Patch dynamics: error depends upon design

Error in the leading
coefficient averaged
over diffusivities

2 < K < n relative to
the scaled core
half-width
0<c/(n—1) <1 for
4 <n<l12.

Patch dynamics

For diffusivity periods K > n (patch half-width) the error is larger —>
patches should cover at least two periods of microscale variation.



Mesoscale temporal coupling for parallel computing

Largest simulations will require multi-processor parallel computing.

The performance limitation will then be communication between

Processors. Mesoscale
temporal coupling

i . . for parallel

If one processor is assigned to one patch, then the required computing

communication is just the coupling between patches.

Challenge To reduce communication delays, can we only communicate
coupling at mesoscale time intervals (instead of each microscale step)?




Mesoscale coupling
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Mesoscale coupling

At

Schematic of the coupling conditions (5) for the jth patch with nearest
neighbour coupling where coupling values between patches is only
evaluated and communicated at mesoscale time steps dt. As indicated,
the average (3) on patches j == 1 and j feed into the coupling conditions
(5) on the jth patch.




Incurred error: distribution across a patch
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The solid lines describe the upper bound of components of the error in a
patch with half-width n =20, cos{ = 0.91, mesoscale time 6t = 0.5 and
number of f derivatives Q =1, 3,5, 7. Lines with the same colour have
the same Q but all possible core half-widths ¢ =0, ..., 19 (insignificant
differences). Inset: the error on the same scale as the main plot with
n=20,38t=05, Q=1, and different patch widths.




