A Gappy Simulation with a Multi-fidelity Information Fusion

Seungjoon Lee

Division of Applied Mathematics

Brown University

Gappy Simulation

- Solve only selected subdomains independently with partial information.
- Partial information coarse but global information.

Local/refine information

Global/coarse information

Gappy Simulation

- Spatio-gappy simualtion gaps in space only (gap-tooth algorithm).
- Saptio-temporal gappy simulation –gaps in space and time (patch dynamics).

Solution space of spatio-gappy simulation

Solution space of spatio-temporal gappy simulation

Motivations

- Basic Idea: If our solution is smooth enough, we can solve only subdomains.
- Computational cost reduction.
- Adaptively refinement.
- Easy-to-combine multi-fidelity/multi-scale problem.
- Machine learning based information fusion.
- Expand the efficient framework from dynamical systems to continuum system.

General Algorithm

- Start from a "gap-tooth" algorithm for micro simulators.
- Combine with estimation theories.

Indicative gap-tooth simulation of a dam-break shows the water depth h(x, t) 1)

Estimation theories: (a) spatio-estimation (b) temporal estimation ²⁾

- 1) M. Cao et al. Multiscale modelling couples patches of nonlinear wave-like simulations (2014).
- 2) S. Lee et al. Resilient Algorithms for Reconstructing and Simulating Gappy Flow Flelds in CFD (2015).

A Key Issue in a Gappy Simulation

 Imposing boundary condition at local boundary by multi-fidelity information fusion.

- CoKriging with two different information local/refine and global/coarse.
- Estimate x_b by the linear combination of these two information.

$$\mathbf{x} = \{x \in \Omega_P\}$$
 and $\mathbf{y} = \{y \in \Omega_L\}$

Where Ω_L is a set of partial domains (local/refine)

 Ω_P is a set of partial information (global/coarse)

$$\hat{u}(\mathbf{x_b}) = \lambda_1^{\mathbf{T}} \mathbf{x} + \lambda_2^{\mathbf{T}} \mathbf{y}$$

$$\underset{\lambda \mathbf{1}, \lambda \mathbf{2}}{\operatorname{arg\,min}} E[(\hat{u}(\mathbf{x_b}) - u(\mathbf{x_b}))^2]$$

Subject to

$$\sum \lambda_i^1 = 1$$
 and $\sum \lambda_i^2 = 0$

By matrix form,

$$\begin{bmatrix} C_{11} & C_{12} & \mathbf{1} & \mathbf{0} \\ C_{21} & C_{22} & \mathbf{0} & \mathbf{1} \\ \mathbf{1}^{\mathsf{T}} & \mathbf{0}^{\mathsf{T}} & 0 & 0 \\ \mathbf{0}^{\mathsf{T}} & \mathbf{1}^{\mathsf{T}} & 0 & 0 \end{bmatrix} \begin{bmatrix} \lambda^{\mathbf{1}} \\ \lambda^{\mathbf{2}} \\ \mu^{\mathbf{1}} \\ \mu^{\mathbf{2}} \end{bmatrix} = \begin{bmatrix} \mathbf{c}_{\mathbf{1}}(\mathbf{x}_{\mathbf{b}}) \\ \mathbf{c}_{\mathbf{2}}(\mathbf{x}_{\mathbf{b}}) \\ 1 \\ 0 \end{bmatrix}$$

Where C_{11} covariance matrix between Ω_P C_{12} covariance matrix between Ω_P and Ω_L C_{22} covariance matrix between Ω_L c_1 covariance vector between c_1 and c_2 covariance vector between c_3 and c_4 covariance vector between c_5 and c_6

- Different type of correlation kernels like below.
- Hyper-parameters are calculated by "least-squared" or "Maximum likelihood".

Power
$$\gamma(\mathbf{h}) = Ah^c$$

$$\chi(\mathbf{h}) = A \left[1 - e^{-h/B}\right]$$
 Spherical
$$\gamma(\mathbf{h}) = A \left[1.5(h/B) - 0.5(h/B)^3\right]$$
 Gaussian
$$\gamma(\mathbf{h}) = A \left[1 - e^{-(h/B)^2}\right]$$
 Sine wave
$$\gamma(\mathbf{h}) = A \left[1 - (B/h)\sin(h/B)\right]$$

Dirichlet/Neumann/Robin boundary condition.

Dirichlet
$$u_d(x_b) = \sum_{i=1}^{n_1} \lambda_i^1 u(x_i) + \sum_{i=1}^{n_2} \lambda_i^2 u(y_i)$$

Neumann
$$u_n(x_b) = \frac{u_d(x_b + dx) - u_d(x_b - dx)}{2dx}$$

Robin
$$u_r(x_b) = \alpha u_d(x_b) + (1 - \alpha)u_n(x_b)$$

Gappy Simulation

Boundary condition

- Use "Robin" boundary condition. $u_r = \alpha u_d + (1 \alpha)u_n$
- Same analogy of Inter-Patch Conditions in overlapped domain decomposition.

Inter-Patch Condition 1)

Buffer

Avoid penetrating the negative effect from wrong boundary values.

Samaey et. al. Patch dynamics with buffers for homogenization problems (2006).

Flow Chart

3. Choose "buffer" size.

Flow Chart

Repeat step 5-7 until simulation end.

$$\frac{\partial T}{\partial t} = \kappa \Delta T$$

$$T = 1$$

$$T=0$$

$$T=0$$

$$T=0$$

Partial information comes from a coarse grid.

10 x 10 coarse grid

- Boundary condition Inter-Patch Condition.
- Robin boundary condition U_r = α u_d + (1-α) u_n.

Partial information comes from a coarse grid.

Gappy Simulation

Original solution

- RMS Error for each cells.
- Cell 3 has the biggest error due to absence of global(exact) boundary.

$$\frac{\partial \mathbf{v}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{v} = -\nabla p + \nu \Delta \mathbf{v} + f$$
$$\nabla \cdot \mathbf{v} = 0$$

$$u = 1, v = 0$$

$$u, v = 0$$
 $u, v = 0$

u, v = 0

Partial information comes from a coarse grid.

- Boundary condition Inter-Patch Condition.
- Robin boundary condition $U_r = \alpha u_d + (1-\alpha) u_n$.

Partial information comes from a coarse grid.

Gappy Simulation

Original solution

RMS Error – Inter-Patch condition is the best but need to find optimal choice.

A Spatio-temporal Gappy Simulation

- Spatio-gappy simualtion gaps in space only (gap-tooth algorithm).
- Saptio-temporal gappy simulation –gaps in space and time (patch dynamics).

Solution space of spatio-gappy simulation

Solution space of spatio-temporal gappy simulation

Equation-free Projective Integration

Save a snapshot every τ and after third snapshot is saved, project (estimate)
 "nt" by POD-based projective integration.

- Estimation
- Simulation

Equation-free Projective integration

General algorithm for Equation-free projective integration.

$$u(t,x) = \sum_{k} a_k(t)\phi_k(x).$$

(restriction)
$$a(t_i) = \mathcal{P}u(t_i, x) = \{(u(t_i, x), \phi_k(x)), \forall k\}$$
 $i = 1, \dots, n.$

$$(\text{estimation}) \quad a(t^*) = \left[\frac{d_i + d_{i+1} - 2\Delta_i}{(t_{i+1} - t_i)^2}\right](t^* - t_i)^3 + \left[\frac{-2d_i - d_{i+1} + 3\Delta_i}{t_{i+1} - t_i}\right](t^* - t_i)^2 + d_i(t^* - t_i) + a(t_i).$$

where
$$\Delta_i = (a(t_{i+1}) - a(t_i))/(t_{i+1} - t_i)$$
 and $d_i = a(t_i)'$

(lifting)
$$u\left(t^{*},x\right)=\mathcal{L}a(t^{*})=\sum_{k}a_{k}(t^{*})\phi_{k}(x).$$

Summary/Future Work

- Introduced Efficient framework of a gappy simulation in PDEs from the gaptooth/patch dynamics algorithm in Dynamical Systems.
- Introduced a multi-fidelity information fusion Machine learning based algorithm by coKriging.
- Example of a spatio-gappy simulation Heat equation, Lid-driven cavity flow.
- Example of a spatio-temporal gappy simulation Heat equation by the projective integration.
- Expand multi-scale/multi-source information fusion.