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Schur-Parlett Algorithms for f(A)

If A is upper triangular then f(A) is also upper triangular

Can use the Schur decomposition

A=0TQ* — f(A)=Qf(T)Q"

Also, Af(A) = f(A )A (matrices commute with their
functions)

Parlett discovered recurrence for U = f(T) of a triangular T
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Higham’s Stable Version for the Sign Function

Higham discovered that for the sign function of a triangular
matrix, another recurrence is stable exactly when Parlett’s is
not: f(T)f(T) = U? = I; this leads to the stable recurrence
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Flop count is (1/3)n° to (2/3)n?




Two Different Approaches for
Communication-Efficient Matrix Signs




The Block Version of Schur-Parlett Leads to Sylvester
Equations

A block version of the same recurrence,
Ui = f(Ti)
-
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The second equation is a Sylvester equation from which we
can compute Uj;

The Sylvester equation is non-singular iff Ty;, T;; have no
eigenvalues in common

A framework by Davies and Higham reorders the Schur form
and partitions T so that the eigenvalues of Tj;, T;; are far
enough




The Blocked Approach

(1) Reorder the Schur form T = PTP* such that
diag(M=[1 1 -~ 1 =1 ... —1]

or A = (QP)T(QP)” )
(2) Uy =1(T11) =1 Up =1(Tp) = -1
(3) Compute U;, by solving the Sylvester equation

T U, — Upa Ty = Uy Thn — TipUpy = 2Ty,




Subroutines in the Blocked Algorithm

Schur-form reordering: XTRSEN in LAPACK (Bai and

Demmel] 1993)
Blocked version by Kressner 2006 (not in LAPACK but he

gave us the code)
Flop count is 12nk, between 12n? and 3n°, depending on n_,

n., and ordering of diag(U)

XTRSYL (Bartels-Stewart) for the Sylvester equation
(m_n.(n_ +n.) flops, between n* and n’/4)

Recursive cache-efficient version (RECSY) by Jonsson and
Kagstrom, 2003, 2009

Total is quadratic (!!!) if there are few positive/negative
eigenvalues, 3n’ in the worst case (4.5X relative to Higham)




A Recursive Higham Recurrence

In 2014: a simple looking formulation; apparently correct
code; but could not prove correctness

Now: a more complex formulation, but with a correctness
proof (and easier to code) based on

(MW = (UT)y
L,

U

(uu);

U

al | I ——




Notation




Block Recurrences

expand into
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Auxiliary Matrices to Represent the Sums

Define
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Algorithm computes blocks of X, Y, then the corresponding
block of U




Computing the (1,1) Block

These blocks depend on the just-computed (2,1) block of U




Computing the (2,1) Blocks (Easy Ones)
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Computing the (1,2) Block

Depend on both (1,1) and (2,2)




Reducing Arithmetic

The actual computations of u;; are at the bottom of the
recursion and they use either x;; or y;;

Which will be used is known a-priori; depends on sign of
Wi +— W

Can implement (and we have) modified matrix
multiplication that only contributes to x;; or y;;

Likely to slow down in practice because we can’t use XxGEMM




Experimental Results

Test set: real part of Schur form of random matrices
En.] =En_| = n/2

Variance of the inertia is insignificant, so in all cases
Ny &N BN

In later experiments we flip the sign of eigenvalues in these
matrices so that exactly 3 are negative, in random positions.




Performance Comparison forn. ~n_ ~n/2
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Performance Comparison forn,. ~n_ ~n/2
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n. =~ n_ = n/2: Observations

Recursive Higham-Parlett with XxGEMM is fastest (Sylvester
solver was in AN14)

Recursive Sylvester next best
Multithreaded XxGEMM help both
Really slow (factor to 20 to 70):

e Trying to compute either x;; or y;;

e The original Higham-Parlett
e Sylvester using LAPACK routines




n_ = 3: Observations

The quadratic Schur-reordering+ Sylvester methods are
orders of magnitude faster
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