SKETCHING BASED MATRIX COMPUTATIONS FOR LARGE-SCALE DATA ANALYSIS

Haim Avron
Tel Aviv University
(work performed while at IBM Research)

The Success of Sketching-based Linear Regression

Sequential on a laptop (2009):

(from Avron, Maymounkov and Toledo 2010)

Distributed-memory on BlueGene/Q (2015):

(from Chander et al. 2015)

Matrix Sketching

■ A (randomized) transform that maintains some notion of geometry, e.g. Euclidean distance $\|\mathbf{S}\mathbf{x}\|_2 = (1 \pm \epsilon)\|\mathbf{x}\|_2$,

on a subspace, e.g. for all $x \in \mathcal{V}$ (with high probability).

Two 'flavors' of use: "sketch-and-solve" and "sketch-to-precondition".

Sketch-and-solve:

- Problems:
- Not practical for high quality approximations
- Might fail.
- Advantages:
- Very fast for low quality approximations.
- Usually good results for machine learning and data analysis applications.

Sketch-to-precondition:

- Use S to precondition the problem, e.g.
- Factorize SX = QR.
- Solve $\mathbf{z} = \operatorname{argmin}_{\mathbf{z}} ||\mathbf{X}\mathbf{R}^{-1}\mathbf{z} \mathbf{y}||_{2}$.
- Return w = R⁻¹z.
- Advantages:
- Fast even for high quality approximations.
- Failure results only in longer running times, and not in bad output.

Warm-up: Linear Ridge Regression

(also called 'Tikhonov Regularization')

- Suppose d ≫ n, and assume X is full rank.
- There are infinite solutions to Xw = y.
- It is common to add a "ridge regularizer" to make the solution unique

$$\mathbf{w} = \arg\min \|\mathbf{X}\mathbf{w} - \mathbf{y}\|_2^2 + \lambda \|\mathbf{w}\|_2^2$$

Equivalent over-determined least squares:

$$\mathbf{w} = \arg\min \left\| \begin{bmatrix} \mathbf{X} \\ \sqrt{\lambda} \mathbf{I}_d \end{bmatrix} \mathbf{w} - \begin{bmatrix} \mathbf{y} \\ 0 \end{bmatrix} \right\|_2^2$$

■ However $n + d \approx d$ so previously presented algorithms are not applicable.

Preconditioning by Sketching on the "Right"

Rewriting the problem:

$$\mathbf{w} = \arg_{\mathbf{w}} \min \|\mathbf{w}\|_{2}^{2} + \|\mathbf{z}\|_{2}^{2} \quad s.t. \quad \mathbf{X}\mathbf{w} + \sqrt{\lambda}\mathbf{z} = \mathbf{y}$$

- We we need to find the minimum norm solution for $\widehat{X}\widehat{w} = y$ $\widehat{X} = \begin{bmatrix} x & \sqrt{\lambda} \mathbf{I}_n \end{bmatrix}$
- "sketch on the right":
- Sketch only X, compute XST
- Factorize [XS^T √λI_n] = LQ.
- Use L as a preconditioner.
- Remarks:
- Sketching only X is motivated by the nonlinear case (later in the talk).
- Keeping the regularizer un-sketched costs very little (and we actually gain from it!).

Analysis of Sketch-based Preconditioned Ridge Regression (with Clarkson and Woodruff)

An S "works" if for a fixed A and B and a selected c we have

$$\|\mathbf{A}^{\mathsf{T}}\mathbf{S}^{\mathsf{T}}\mathbf{S}\mathbf{B} - \mathbf{A}^{\mathsf{T}}\mathbf{B}\|_{F} \le c\|\mathbf{A}\|_{F}\|\mathbf{B}\|_{F}$$

with high probability (aka probability of at least $1 - \delta$).

- Sketching dimension (number of rows in S) depend on c, δ and #rows in A and B.
- The relevant condition number is $\kappa(XX^T + \lambda I_n, XS^TSX^T + \lambda I_n)$
- Suppose that $\mathbf{X} = \mathbf{L}_{\lambda} \mathbf{Q}_{\lambda}$ such that $\mathbf{L}_{\lambda} \mathbf{L}_{\lambda}^{T} = \mathbf{X} \mathbf{X}^{T} + \lambda \mathbf{I}_{n}$. Then,

$$\kappa (\mathbf{X}\mathbf{X}^{\mathsf{T}} + \lambda \mathbf{I}_{n}, \mathbf{X}\mathbf{S}^{\mathsf{T}}\mathbf{S}\mathbf{X}^{\mathsf{T}} + \lambda \mathbf{I}_{n}) = \kappa (\mathbf{X}\mathbf{S}^{\mathsf{T}}\mathbf{S}\mathbf{X}^{\mathsf{T}} + \lambda \mathbf{I}_{n}, \mathbf{X}\mathbf{X}^{\mathsf{T}} + \lambda \mathbf{I}_{n}) = \kappa (\mathbf{X}\mathbf{S}^{\mathsf{T}}\mathbf{S}\mathbf{X}^{\mathsf{T}} + \lambda \mathbf{I}_{n}, \mathbf{L}_{\lambda}\mathbf{L}_{\lambda}^{\mathsf{T}})$$

$$= \kappa (\mathbf{Q}_{\lambda}\mathbf{S}^{\mathsf{T}}\mathbf{S}\mathbf{Q}_{\lambda}^{\mathsf{T}} + \lambda \mathbf{L}_{\lambda}^{-1}\mathbf{L}_{\lambda}^{-\mathsf{T}})$$

■ To bound this we note that $\mathbf{Q}_{\lambda}\mathbf{Q}_{\lambda}^{T} + \lambda \mathbf{L}_{\lambda}^{-1}\mathbf{L}_{\lambda}^{-T} = \mathbf{I}_{n}$, so

$$\|\mathbf{Q}_{\lambda}\mathbf{S}^{\mathsf{T}}\mathbf{S}\mathbf{Q}_{\lambda}^{\mathsf{T}} + \lambda\mathbf{L}_{\lambda}^{-1}\mathbf{L}_{\lambda}^{-\mathsf{T}} - \mathbf{I}_{\mathsf{n}}\|_{F} = \|\mathbf{Q}_{\lambda}\mathbf{S}^{\mathsf{T}}\mathbf{S}\mathbf{Q}_{\lambda}^{\mathsf{T}} - \mathbf{Q}_{\lambda}\mathbf{Q}_{\lambda}^{\mathsf{T}}\|_{F}$$

■ So, select enough rows such that this term $\leq \frac{1}{2}$, which guarantees $\kappa \leq 3$.

Sparse Sketching (COUNTSKETCH)

- Defined by:
- Random hash function h: {1, ..., d} → {1, ..., s}
- Random sign function g: {1, ..., d} → {-1,+1}
- $(\mathbf{S}\mathbf{x})_i = \sum_{j \mid h(j)=i} g(j)\mathbf{x}_j$, so $\mathbf{S}\mathbf{x}$ can be computed in $O(\mathbf{n}\mathbf{n}\mathbf{z}(\mathbf{x}) + s)$.

Analysis of Sketch-based Preconditioned Ridge Regression (with Clarkson and Woodruff)

An S "works" if for a fixed A and B and a selected c we have

$$\|\mathbf{A}^{\mathsf{T}}\mathbf{S}^{\mathsf{T}}\mathbf{S}\mathbf{B} - \mathbf{A}^{\mathsf{T}}\mathbf{B}\|_{F} \le c\|\mathbf{A}\|_{F}\|\mathbf{B}\|_{F}$$

with high probability (aka probability of at least $1 - \delta$).

- Sketching dimension (number of rows in S) depend on c, δ and #rows in A and B.
- The relevant condition number is $\kappa(XX^T + \lambda I_n, XS^TSX^T + \lambda I_n)$
- Suppose that $\mathbf{X} = \mathbf{L}_{\lambda} \mathbf{Q}_{\lambda}$ such that $\mathbf{L}_{\lambda} \mathbf{L}_{\lambda}^{T} = \mathbf{X} \mathbf{X}^{T} + \lambda \mathbf{I}_{n}$. Then,

$$\kappa (\mathbf{X}\mathbf{X}^{\mathsf{T}} + \lambda \mathbf{I}_{n}, \mathbf{X}\mathbf{S}^{\mathsf{T}}\mathbf{S}\mathbf{X}^{\mathsf{T}} + \lambda \mathbf{I}_{n}) = \kappa (\mathbf{X}\mathbf{S}^{\mathsf{T}}\mathbf{S}\mathbf{X}^{\mathsf{T}} + \lambda \mathbf{I}_{n}, \mathbf{X}\mathbf{X}^{\mathsf{T}} + \lambda \mathbf{I}_{n}) = \kappa (\mathbf{X}\mathbf{S}^{\mathsf{T}}\mathbf{S}\mathbf{X}^{\mathsf{T}} + \lambda \mathbf{I}_{n}, \mathbf{L}_{\lambda}\mathbf{L}_{\lambda}^{\mathsf{T}})$$

$$= \kappa (\mathbf{Q}_{\lambda}\mathbf{S}^{\mathsf{T}}\mathbf{S}\mathbf{Q}_{\lambda}^{\mathsf{T}} + \lambda \mathbf{L}_{\lambda}^{-1}\mathbf{L}_{\lambda}^{-\mathsf{T}})$$

■ To bound this we note that $\mathbf{Q}_{\lambda}\mathbf{Q}_{\lambda}^{T} + \lambda \mathbf{L}_{\lambda}^{-1}\mathbf{L}_{\lambda}^{-T} = \mathbf{I}_{n}$, so

$$\|\mathbf{Q}_{\lambda}\mathbf{S}^{\mathsf{T}}\mathbf{S}\mathbf{Q}_{\lambda}^{\mathsf{T}} + \lambda\mathbf{L}_{\lambda}^{-1}\mathbf{L}_{\lambda}^{-\mathsf{T}} - \mathbf{I}_{\mathsf{n}}\|_{F} = \|\mathbf{Q}_{\lambda}\mathbf{S}^{\mathsf{T}}\mathbf{S}\mathbf{Q}_{\lambda}^{\mathsf{T}} - \mathbf{Q}_{\lambda}\mathbf{Q}_{\lambda}^{\mathsf{T}}\|_{F}$$

■ So, select enough rows such that this term $\leq \frac{1}{2}$, which guarantees $\kappa \leq 3$.

Sparse Sketching (COUNTSKETCH)

- Defined by:
- Random hash function h: {1,...,d} → {1,...,s}
- Random sign function g: {1, ..., d} → {-1,+1}
- $(\mathbf{S}\mathbf{x})_i = \sum_{j \mid h(j)=i} g(j)\mathbf{x}_j$, so $\mathbf{S}\mathbf{x}$ can be computed in $O(\mathbf{n}\mathbf{n}\mathbf{z}(\mathbf{x}) + s)$.

Alternative matrix definition:

- S = HD, where
- D is random diagonal, with ±1.
- H ∈ ℝ^{s×d} has H_{*j} chosen randomly from e₁, ..., e_s.

Lemma (Thorup and Zhang, 2012):

$$\Pr\left(\left\|\mathbf{A}^{\mathsf{T}}\mathbf{S}^{\mathsf{T}}\mathbf{S}\mathbf{B} - \mathbf{A}^{\mathsf{T}}\mathbf{B}\right\|_{F} \leq \frac{3\sqrt{2}\|\mathbf{A}\|_{F}\|\mathbf{B}\|_{F}}{\sqrt{s\delta}}\right) \geq 1 - \delta$$

Sparse Sketching (CountSketch)

- Defined by:
- Random hash function h: {1, ..., d} → {1, ..., s}
- Random sign function g: {1, ..., d} → {-1,+1}
- $(\mathbf{S}\mathbf{x})_i = \sum_{j \mid h(j)=i} g(j)\mathbf{x}_j$, so $\mathbf{S}\mathbf{x}$ can be computed in $O(\mathbf{n}\mathbf{n}\mathbf{z}(\mathbf{x}) + s)$.

Alternative matrix definition:

- S = HD, where
- D is random diagonal, with ±1.
- H ∈ ℝ^{s×d} has H_{*j} chosen randomly from e₁, ..., e_s.

Sketch Size for Preconditioned Ridge Regression

- Recall:
- If $\kappa(\mathbf{Q}_{\lambda}\mathbf{S}^{\mathsf{T}}\mathbf{S}\mathbf{Q}_{\lambda}^{\mathsf{T}} + \lambda\mathbf{L}_{\lambda}^{-1}\mathbf{L}_{\lambda}^{-\mathsf{T}}) \leq 3$ then we have a good preconditioner.
- If $\|\mathbf{Q}_{\lambda}\mathbf{S}^{\mathsf{T}}\mathbf{S}\mathbf{Q}_{\lambda}^{\mathsf{T}} \mathbf{Q}_{\lambda}\mathbf{Q}_{\lambda}^{\mathsf{T}}\|_{F} \leq \frac{1}{2}$, then $\kappa(\mathbf{Q}_{\lambda}\mathbf{S}^{\mathsf{T}}\mathbf{S}\mathbf{Q}_{\lambda}^{\mathsf{T}} + \lambda\mathbf{L}_{\lambda}^{-1}\mathbf{L}_{\lambda}^{-\mathsf{T}}) \leq 3$.
- The last lemma ensures that with $s = O(\|\mathbf{Q}_{\lambda}\|_F^2)$ we have a good preconditioner.
- We have:

$$\mathbf{rank}_{\lambda} \equiv \|\mathbf{Q}_{\lambda}\|_{F}^{2} = \sum_{i=1}^{n} \frac{\sigma_{i}^{2}}{\sigma_{i}^{2} + \lambda}$$

Always: rank_λ ≤ n, and can be much smaller (for large λ).
 (So: we benefit from not sketching the ridge term!)

rank, is known as the effective degrees of freedom in the statistics literature.

What about Sketch-and-Solve?

Chen et al. 2015:

- Compute $\widetilde{\mathbf{w}} = \mathbf{X}^T (\mathbf{X}\mathbf{S}^T\mathbf{S}\mathbf{X}^T + \lambda \mathbf{I}_n)^{-1}\mathbf{y}$.
- With enough rows (depends on n), $\|\mathbf{w} \widetilde{\mathbf{w}}\|_2 \le \epsilon \|\mathbf{w}\|_2$.
- Doesn't work well when moving to nonlinear modeling...

(with Clarkson and Woodruff):

- Solve $\widetilde{\mathbf{w}} = \operatorname{arg\,min} \|\mathbf{X}\mathbf{S}^{\mathsf{T}}\mathbf{w} \mathbf{y}\|_{2}^{2} + \lambda \|\mathbf{w}\|_{2}^{2}$.
- $\begin{aligned} & \quad \text{With } O(\frac{\operatorname{rank}_{\lambda}^{2}}{\epsilon^{2}}) \text{ rows in } \mathbf{S} \\ & \quad (1-\epsilon)(\|\mathbf{X}\mathbf{w}-\mathbf{y}\|_{2}^{2}+\lambda\|\mathbf{w}\|_{2}^{2}) \leq \left\|\mathbf{X}\mathbf{S}^{\mathsf{T}}\widetilde{\mathbf{w}}-\mathbf{y}\right\|_{2}^{2}+\lambda\|\widetilde{\mathbf{w}}\|_{2}^{2} \leq (1+\epsilon)(\|\mathbf{X}\mathbf{w}-\mathbf{y}\|_{2}^{2}+\lambda\|\mathbf{w}\|_{2}^{2}). \end{aligned}$
- Rationale: at optimum, both objectives behave similarly.

Regularized Multivariate Polynomial Regression

- Let q be some degree parameter.
- We now try to fit a multivariate polynomial, i.e. $y \approx p_q(\mathbf{x})$.
- Interested in: biggish n (data size), small q (degree), moderate d (data dimension)
- E.g. n = 200,000, q = 3, d = 1000.
- Assume d^q ≫ n.
- The problem is underdetermined, so we need to regularize:
- Let $\mathbf{w}(p_q)$ be a vector of p_q 's monomial coefficients. Use regularizer $\lambda \|\mathbf{w}(p_q)\|_2^2$, i.e. solve

$$p_q = \arg\min_{p_q} \sum_{i=1}^{n} (p_q(\mathbf{x_i}) - y_i)^2 + \lambda ||\mathbf{w}(p_q)||_2^2$$

Remark: not clear if this is a good way to regularize the problem, but it is used in practice.

As Linear Ridge Regression

- Define $V_a(\mathbf{X})$, a multivariate analogue of the Vandermonde matrix
- $-V_q(\mathbf{X}) \in \mathbb{R}^{n \times (d+1)^q}$
- Columns corresponds to monomials (a monomial may appear more than once).
- Rows corresponds to a data points.
- A row x is mapped to $\phi([x 1]) = [x 1] \otimes \cdots \otimes [x 1]$ (q times).
- Example:

$$V_{2}\left(\begin{bmatrix}x_{11} & x_{12} \\ x_{21} & x_{22}\end{bmatrix}\right) = \begin{bmatrix}1 & x_{11} & x_{12} & x_{11} & x_{12} & x_{11}x_{12} & x_{12}x_{11} & x_{11}^{2} & x_{12}^{2} \\ 1 & x_{21} & x_{22} & x_{21} & x_{22} & x_{21}x_{22} & x_{22}x_{21} & x_{21}^{2} & x_{22}^{2}\end{bmatrix}$$

Compute

$$\mathbf{w} = \arg\min \|V_q(\mathbf{X})\mathbf{w} - \mathbf{y}\|_2^2 + \lambda \|\mathbf{w}\|_2^2$$
 and output is p_q such that $\mathbf{w}(p_q) = \mathbf{w}$. Specifically, $p_q(\mathbf{x}) = \phi([\mathbf{x} \ \mathbf{1}]) \cdot \mathbf{w}$.

Seems very expensive when d is not tiny.

Alternative Algorithm

Observation 1:
$$\mathbf{w} = V_q(\mathbf{X})^T (V_q(\mathbf{X})V_q(\mathbf{X})^T + \lambda I_n)^{-1} \mathbf{y}$$

■ Observation 2:
$$\left(V_q(\mathbf{X})V_q(\mathbf{X})^{\mathsf{T}}\right)_{ij} = \left(\mathbf{x}_i \cdot \mathbf{x}_j + 1\right)^q$$

- Efficient Multivariate Polynomial Regression:
- Use observation 2 to compute V_q(X)V_q(X)^T in O(n²d log q).
- Compute $\alpha = (V_q(\mathbf{X})V_q(\mathbf{X})^T + \lambda I_n)^{-1} \mathbf{y}$ in $O(n^3)$.
- Via observation 1 we found polynomial $p_q(\mathbf{x}) = \phi(\mathbf{x})V_q(\mathbf{X})^{\mathrm{T}}\alpha$.
- Similar to observation 2, $\phi(\mathbf{x})V_q(\mathbf{X})^T$ can be computed in $O(nd \log q)$.
- So, p_q(x) can be computed in O(nd log q).

Goal: accelerate this using sketching!

TENSORSKETCH

(Pham and Pagh, 2013)

- $S \in \mathbb{R}^{s \times (d+1)^q}$ defined by:
- q random hash functions $h_1, ..., h_q: \{1, ..., d+1\} \rightarrow \{1, ..., s\}$
- q random sign function g₁,...,g_q: {1,...,d+1} → {-1,+1}
- These define new sign and hash functions: $H(i_1,...,i_q) = \sum\nolimits_{i=1}^q h_i(i_i) \bmod s$

$$G(i_1, \dots, i_q) = \prod_{j=1}^q g_j(i_j)$$

S is the CountSketch matrix defined by H and G (after indexing rows by tuples).

TensorSketch can sometimes be applied quickly $(O(q(nnz(\mathbf{x}) + s \log s)))$:

$$\phi(\mathbf{x})\mathbf{S}^{\mathsf{T}} = \mathbf{F}\mathbf{F}\mathbf{T}^{-1}\left(\mathbf{F}\mathbf{F}\mathbf{T}\left(\mathbf{x}\mathbf{S}_{1}^{\mathsf{T}}\right) \odot \cdots \odot \mathbf{F}\mathbf{F}\mathbf{T}\left(\mathbf{x}\mathbf{S}_{q}^{\mathsf{T}}\right)\right)$$

where \mathbf{S}_{j} is the CountSketch matrix defined by h_{j} and g_{j} .

Approximate Matrix Multiplication Properties

(with Nguyen and Woodruff)

Lemma:

Suppose **S** is a TensorSketch matrix with $s \ge \frac{2+3^q}{c^2\delta}$ rows, then

$$\Pr\left(\left\|\mathbf{A}^{\mathsf{T}}\mathbf{S}^{\mathsf{T}}\mathbf{S}\mathbf{B} - \mathbf{A}^{\mathsf{T}}\mathbf{B}\right\|_{F} \le c\left\|\mathbf{A}\right\|_{F}\left\|\mathbf{B}\right\|_{F}\right) \ge 1 - \delta$$

Corollary:

 $s = O(\operatorname{rank}_{\lambda}(V_q(\mathbf{X})^2))$ rows suffice for $V_q(\mathbf{X})\mathbf{S}^T\mathbf{S}V_q(\mathbf{X})^T + \lambda\mathbf{I}_n$ to be a good preconditioner for $V_q(\mathbf{X})V_q(\mathbf{X})^T + \lambda\mathbf{I}_n$.

Efficient Use of the Preconditioner

- The preconditioner is only useful if s < n.
- Otherwise, we might as well compute and factor $V_q(\mathbf{X})V_q(\mathbf{X})^{\mathrm{T}} + \lambda \mathbf{I}_n$.
- For s < n, we can do better than computing and factoring $V_q(\mathbf{X})\mathbf{S}^T\mathbf{S}V_q(\mathbf{X})^T + \lambda \mathbf{I}_n$.
- The Woodbury matrix identity imply that $(V_q(\mathbf{X})\mathbf{S}^\mathsf{T}\mathbf{S}V_q(\mathbf{X})^\mathsf{T} + \lambda\mathbf{I}_n)^{-1} = \lambda^{-1}(\mathbf{I}_n V_q(\mathbf{X})\mathbf{S}^\mathsf{T}(\mathbf{S}V_q(\mathbf{X})^\mathsf{T}V_q(\mathbf{X})\mathbf{S}^\mathsf{T} + \lambda\mathbf{I}_s)^{-1}\mathbf{S}V_q(\mathbf{X})^\mathsf{T})$
- So, with $O(ns^2)$ preprocessing we can apply the preconditioner efficiently.

Faster Regularized Multivariate Polynomial Regression

1. Compute
$$\mathbf{K} = V_q(\mathbf{X})V_q(\mathbf{X})^{\mathrm{T}} + \lambda \mathbf{I}_n$$
 (cost: $O(n^2 d \log q)$)

2. Compute
$$\mathbf{Z} = V_q(\mathbf{X})\mathbf{S}^T$$
 (cost: $O(q(\operatorname{nnz}(\mathbf{X}) + s \log s))$

3. Factorize
$$\begin{bmatrix} \mathbf{Z} \\ \sqrt{\lambda} \mathbf{I}_s \end{bmatrix} = \mathbf{Q} \mathbf{R}$$
 (cost: $O(ns^2)$)

4. Use CG to solve $\mathbf{K}\alpha = \mathbf{y}$ using $\lambda^{-1}(\mathbf{I}_n - \mathbf{Z}\mathbf{R}^{-1}\mathbf{R}^{-T}\mathbf{Z}^T)$ as preconditioner (cost: $O(n^2)$ per iteration)

Larege Scale Multivariate Polynomial Regression

Dataset from an image processing application:

Dataset from a speech recognition application:

- Classification problems; solved via regression using standard techniques.
- Degree of polynomial is 3 for MNIST and 4 for TIMIT. For both datasets we rescale the features.
- Run on BlueGene/Q using 128 nodes (= 2,048 cores).

Sketching for the Gaussian Kernel: Random Fourier Features (Rahimi and Recht, 2007)

Observation (due to Bochener's Theorem):

$$k(\mathbf{x}, \mathbf{z}) = \mathbf{E}_{\mathbf{w}}(\exp(-i\mathbf{w}^{T}(\mathbf{x} - \mathbf{z})), \quad \mathbf{w} \sim N(0, \sigma^{-2}\mathbf{I}_{d})$$

The sketch: sample w₁, ..., w_s and map

$$\mathbf{x} \to \frac{1}{\sqrt{S}} [e^{-i\mathbf{w}_1^T \mathbf{x}} \dots e^{-i\mathbf{w}_S^T \mathbf{x}}].$$

There is no proof that this sketch has strong matrix multiplication guarantees.

Preconditioned Solver Works Well

Dataset from an image processing application:

Dataset from a speech recognition application:

- Classification problems; solved via regression using standard techniques.
- Degree of polynomial is 3 for MNIST and 4 for TIMIT. For both datasets we rescale the features.
- Run on BlueGene/Q using 128 nodes (= 2,048 cores).

Conclusions

- Matrix sketching is a powerful technique for designing new exciting algorithms.
- So far, it mostly addressed problems motivated by linear modeling.
- However, effectively leveraging "big data" requires nonlinear and nonparametric modeling.
- Matrix sketching can help for nonlinear modeling as well, but there is still much to be done.

Acknowledgements

- Work was done while at IBM Research.
- Collaborators:
- Ken Clarkson, Christopher Carothers, Petros Drineas, Po-sen Huang, Yves Ineichen, Chander Iyer, Georgios Kollias, Petar Maymounkov, Huy Nguyen, Bhuvana Ramabhardan, Tara Sainath, Vikas Sindhwani, Sivan Toledo, David Woodruff
- Support of the XDATA program of the Defense Advanced Research Projects Agency (DARPA), administered through Air Force Research Laboratory contract FA8750-12-C-0323.

More General: Kernel Ridge Regression

- Multivariate polynomial regression is a special case of kernel ridge regression.
- In kernel ridge regression we start with a kernel $k: \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$.
- The kernel defines an Hilbert space H.
- We search for functions in H, i.e, solve

$$\arg\min_{f\in\mathcal{H}}\sum_{i=1}^{\infty} (y_i - f(\mathbf{x}_i))^2 + \lambda \|f\|_{\mathcal{H}}^2.$$

Skipping ... some ... mathematical ... details, the solution is

$$f(\mathbf{x}) = \sum_{i=1}^{n} \alpha_i k(\mathbf{x}_i, \mathbf{x})$$

where

with
$$\mathbf{K}_{ij} = k(\mathbf{x}_i, \mathbf{x}_j)$$
.

$$(\mathbf{K} + \lambda \mathbf{I}_n)\alpha = \mathbf{y}$$

Larege Scale Multivariate Polynomial Regression

Dataset from an image processing application:

Dataset from a speech recognition application:

- Classification problems; solved via regression using standard techniques.
- Degree of polynomial is 3 for MNIST and 4 for TIMIT. For both datasets we rescale the features.
- Run on BlueGene/Q using 128 nodes (= 2,048 cores).

TENSORSKETCH

(Pham and Pagh, 2013)

- $S \in \mathbb{R}^{s \times (d+1)^q}$ defined by:
- q random hash functions $h_1, ..., h_q: \{1, ..., d+1\} \rightarrow \{1, ..., s\}$
- q random sign function g₁,...,g_q: {1,...,d+1} → {-1,+1}
- These define new sign and hash functions:

$$H(i_1,...,i_q) = \sum_{j=1}^{q} h_j(i_j) \mod s$$

$$G(i_1, \dots, i_q) = \prod_{j=1}^q g_j(i_j)$$

S is the CountSketch matrix defined by H and G (after indexing rows by tuples).

TensorSketch can sometimes be applied quickly $(O(q(nnz(x) + s \log s)))$:

$$\phi(\mathbf{x})\mathbf{S}^{\mathsf{T}} = \mathbf{F}\mathbf{F}\mathbf{T}^{-1}\left(\mathbf{F}\mathbf{F}\mathbf{T}\left(\mathbf{x}\mathbf{S}_{1}^{\mathsf{T}}\right) \odot \cdots \odot \mathbf{F}\mathbf{F}\mathbf{T}\left(\mathbf{x}\mathbf{S}_{q}^{\mathsf{T}}\right)\right)$$

where \mathbf{S}_{j} is the CountSketch matrix defined by h_{j} and g_{j} .

Efficient Use of the Preconditioner

- The preconditioner is only useful if s < n.
- Otherwise, we might as well compute and factor $V_q(\mathbf{X})V_q(\mathbf{X})^{\mathrm{T}} + \lambda \mathbf{I}_n$.
- For s < n, we can do better than computing and factoring $V_q(\mathbf{X})\mathbf{S}^T\mathbf{S}V_q(\mathbf{X})^T + \lambda \mathbf{I}_n$.
- The Woodbury matrix identity imply that $(V_q(\mathbf{X})\mathbf{S}^\mathsf{T}\mathbf{S}V_q(\mathbf{X})^\mathsf{T} + \lambda\mathbf{I}_n)^{-1} = \lambda^{-1}(\mathbf{I}_n V_q(\mathbf{X})\mathbf{S}^\mathsf{T}(\mathbf{S}V_q(\mathbf{X})^\mathsf{T}V_q(\mathbf{X})\mathbf{S}^\mathsf{T} + \lambda\mathbf{I}_s)^{-1}\mathbf{S}V_q(\mathbf{X})^\mathsf{T})$
- So, with $O(ns^2)$ preprocessing we can apply the preconditioner efficiently.

Approximate Matrix Multiplication Properties

(with Nguyen and Woodruff)

Lemma:

Suppose **S** is a TensorSketch matrix with $s \ge \frac{2+3^q}{c^2\delta}$ rows, then

$$\Pr\left(\left\|\mathbf{A}^{\mathsf{T}}\mathbf{S}^{\mathsf{T}}\mathbf{S}\mathbf{B} - \mathbf{A}^{\mathsf{T}}\mathbf{B}\right\|_{F} \le c\|\mathbf{A}\|_{F}\|\mathbf{B}\|_{F}\right) \ge 1 - \delta$$

Corollary:

 $s = O(\operatorname{rank}_{\lambda}(V_q(\mathbf{X})^2))$ rows suffice for $V_q(\mathbf{X})\mathbf{S}^T\mathbf{S}V_q(\mathbf{X})^T + \lambda\mathbf{I}_n$ to be a good preconditioner for $V_q(\mathbf{X})V_q(\mathbf{X})^T + \lambda\mathbf{I}_n$.