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The Success of Sketching-based Linear Regression

Sequential on a laptop (2009): Distributed-memory on BlueGene/Q (2015):
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Matrix Sketching

m A (randomized) transform that maintains some notion of geometry, e.g. Euclidean distance
ISx|l; = (1 + e)llxll>,

on a subspace, e.g. for all x € V (with high probability).

m Two ‘flavors’ of use: “sketch-and-solve” and “sketch-to-precondition”.

Sketch-to-precondition:

Use S to precondition the problem, e.g.
Factorize SX = QR.
Solve

z = argmin, |[XR™z —y||,.

Returnw = R 'z.

Advantages:
Fast even for high quality approximations.

Failure results only in longer running
times, and not in bad output.




Warm-up: Linear Ridge Regression

(also called ‘Tikhonov Regularization’)

Suppose d » n, and assume X is full rank.
There are infinite solutions to Xw = y.

It is common to add a “ridge regularizer” to make the solution unique

w = arg min||Xw —y||5 + A||w]|5
Equivalent over-determined |least squares:

X y
W = arg min I\"'Ild]w - [0]

p
2

However n + d = d so previously presented algorithms are not applicable.




Preconditioning by Sketching on the “Right”

m Rewriting the problem:

w = arg,, min ||w||Z + ||z|]? s.t. Xw +Viz=y

® Weweneed to find the minimum_norm solution for XWw = y
X=|X vil,

m “sketchon the right”:

- Sketchonly X, compute XST
- Factorize [XST V71, = LQ
- Use L as a preconditioner.

m Remarks:
- Sketching only X is motivated by the nonfinear case (later in the talk).
Keeping the regulanizer un-sketched costs very little (and we actually gain from it!).




Analysis of Sketch-based Preconditioned Ridge Regression
(with Clarkson and Woodruff)

m An S “works” if for a fixed A and B and a selected ¢ we have
|ATSTSB — ATB|| . < cllAll.|IBIl,

with high probability (aka probability of at least 1 — §).

m Sketching dimension (number of rows in S) depend on ¢, 6 and #rows in A and B.
m The relevant condition number is k(XX + A1, XSTSXT + Al,,)

= Suppose thatX = L;Q; such that L;LT = XX + AL,,. Then,

(XXT + A1, XSTSXT + 41,,) = (XSTSXT + A1, XXT + 21,,) = x(XSTSXT + A1, L,LT)
= k(Q,STSQT + AL;'L;T)

m To bound this we note that Q;Q} + AL;'L;" =1, so

QaSTSQ; + AL 13" — In|| . = [|Q2STSQ7 - Q|

m S0, select enough rows such that this term < % which guarantees k < 3.




Sparse Sketching (COUNTSKETCH)

m Defined by:
- Random hash function h:{1,...,d} - {1, ..., s}
Random sign function g: {1, ...,d} - {-1,+1}
- (8x); = X;| nejy=: 9U)x;, so Sx can be computed in O(nnz(x) + s).




Analysis of Sketch-based Preconditioned Ridge Regression
(with Clarkson and Woodruff)

m An S “works” if for a fixed A and B and a selected ¢ we have
|ATSTSB — ATB|| . < cllAllIIBIl,

with high probability (aka probability of at least 1 — §).

m Sketching dimension (number of rows in S) depend on ¢, é and #rows in A and B.
m The relevant condition number is k(XX + A1, XSTSX™ + Al,,)
= Suppose thatX = L;Q; such that L;LT = XX + AL,. Then,

(XXT + 21, XSTSXT + 1,,) = w(XSTSXT + A1, XXT + 1,,) = x(XSTSXT + AI,,, L,LT)
= x(Q;STSQT + AL L;T)

m To bound this we note that Q;Q} + AL;'L;" = 1,, s0

|Q:STSQ] + L3 17" — |, = [|Q2STSQT - Q|

m S0, select enough rows such that this term < % which guarantees k < 3.




Sparse Sketching (COUNTSKETCH)

m Defined by:

- Random hash function h:{1, ...,d} - {1, ..., s}
Random sign function g: {1, ...,d} - {-1,+1}

- (Sx); =)

i1 n(jy=: 94U )x;, S0 Sx can be computed in O(nnz(x) + s).

Alternative matrix definition:

m S = HD, where
- D is random diagonal, with +1.
- H e R™¥ has H,;chosen randomly from ey, ..., €.

Lemma (Thorup and Zhang, 2012):

| 3V2||Allz 1Bl
Pr(HATSTSB—ATBHFS VZRAL ”r)zl—a

Vsé




Sparse Sketching (COUNTSKETCH)

m Defined by:

- Random hash function h:{1,...,d} = {1, ..., s}
Random sign function g: {1, ...,d} - {-1,+1}

- (Sx); =X

i1 niy=: 94U )x;, s0 Sx can be computed in O(nnz(x) + s).

Alternative matrix definition:

m S = HD, where
- D is random diagonal, with +1.

- H e R™¥ has H,;chosen randomly from ey, ..., €.




Sketch Size for Preconditioned Ridge Regression

Recall:
if (Q;STSQ] + AL; 'L ") < 3 then we have a good preconditioner.

i |Q2STSQT — QaQJ ||, < then x(Q,STSQ] + AL7'L;T) < 3.
The last lemma ensures that with s = 0([|Q;||F) we have a good preconditioner.

We have:

n 2

rank, = ||Q)||2 :Z 2.
A LHF O’Z+A

(=1 |

Always: rank; < n, and can be much smaller (for large A).
(So: we benefit from not sketching the ridge terml)

rank; is known as the effective degrees of freedom in the statistics literature.




What about Sketch-and-Solve?

Chen et al. 2015:
-1
m Compute w = XT(XSTSXT + 11,,) .
m With enough rows (depends on n), ||lw — W||, < €|lw]|5.

m Doesn’t work well when moving to nonlinear modeling...

(with Clarkson and Woodruff):
2
m Solvew = argmin”XSTw— )’“2 + A|lwl|3.

rank$ .
—) rows in S

m With O(

€

i - - 2 s . \
(1 — &) (IXw — yllZ+2llwll?) < |[XSTw — y ||, + AIWlIZ < (1 + e)(IXw —ylI5 + Allwll2).

m Rationale: at optimum, both objectives behave similarly.




Regularized Multivariate Polynomial Regression

Let g be some degree parameter.
We now try to fit @ multivariate polynomial, i.e. y = p,(x).

Interested in: biggish n (data size), small g (degree), moderate d (data dimension)

E.8. n= 200,000 g=3 4d=1000.

Assume d? >> n.

The problem is underdetermined, so we need to regularize:

Let w(p,) be a vector of p,’s monorgial coefficients. Use regularizer AHw(pq)Hi, i.e. solve
pg = arg n;inZ('pq(xi) ~y)" + A wipy)|;

? =1

Remark: not clear if this is a good way to regularize the problem, but it is used in practice.




As Linear Ridge Regression

Define V,(X), a multivariate analogue of the Vandermonde matrix
I/a(x) € erxgd"."a

Columns corresponds to monomials (a monomial may appear more than once).

Rows corresponds to a data points.
Arowxismappedto ¢([x1]) = |x1] ® .- @ [x 1] (g times).
Example:

v (’11'11 xlzl‘)_
“\lxzy x2l) ™

-
1 x4y X912 X919 X9z X19X92  X92X117 X9y

1 X1 X2 X1 Xp2 Xp1Xp3 Xp2Xp1 X3y
Compute

s 2 .
w = arg min||V,(X)w — y||Z + A||w|3

and output is p, such that w(pq) = w. Specifically, p,(x) = ¢$(|x 1]) -

Seems very expensive when d is not tiny.

w.




Alternative Algorithm

. — v . —
Observation 1: w=1,X)T(LV,XT+41,) y

Observation 2: (®V0T), = (x;-x; + 1)

Efficient Multivariate Polynomial Regression:

Use observation 2 to compute V,(X)V,(X)T in 0(n*d logq).

Compute a = (V,(X)V,(X)T + Al,) " yin O(n?).

Via observation 1 we found polynomial p,(x) = ¢(x)V,(X) .

Similar to observation 2, ¢p(x)V,(X)T can be computed in O(nd logq ).
So, pg(x) can be computed in O(nd logq).

Goal: accelerate this using sketching!




TENSORSKETCH
(Pham and Pagh, 2013)

a S e R*@*D? gefined by:

q random hash functions hy, ..., hy:{1,..,.d + 1} = {1, ..., s}

- qrandom sign function g,, ...,g,:11,...,d + 1} = {—1,+1}
These define new sign and hash functions:

: : q s
Hikyyodz) =Z h;(i;) mod s
=1
- . q -
G(Ll,...,lq) = l—I 1g,(z,)
’:
- S is the CountSkeTCH matrix defined by H and G (after indexing rows by tuples).

TENSORSKETCH can sometimes be applied quickly (O(g(nnz(x) + s logs ))):
$()ST = FFT~* (FFT(xST) © - © FFT(xSY))

where §; is the CountSKeTCH matrix defined by k; and g;.




Approximate Matrix Multiplication Properties
(with Nguyen and Woodruff)

Lemma:

2+34

25 [OWS, then

Suppose S IS a TENSORSKETCH matrix with s =

pr(||ATs"SB — A"B]|, < cl|AlllIBll;) 2 1~ &

Corollary:
s = O(rank; (V,(X)*) rows suffice for 1, (')(,’)STSVQ()()T + A1, to be a good preconditioner
for V;(X)V,(X)T + A1,,.




Efficient Use of the Preconditioner

The preconditioner is only useful if s < n.
Otherwise, we might as well compute and factor V, (X)V,(X)" + Al,,.

For s < n, we can do better than computing and factoring V, (X)S™SV, (X)* + A1,,.

The Woodbury matrix identity imply that
; - - _ G ™
(V,(X)STSV,(X)T + AL,) " = A~ (1, — V,(X)ST(SV, (X) TV, (X)ST + L)~ SV, (X)T)

So, with 0(ns?) preprocessing we can apply the preconditioner efficiently.




Faster Regularized Multivariate Polynomial Regression

Compute K = V,,(X) L;(X)T + Al, (cost: O(n®d logg))
Compute Z = V,(X)S” (cost: O(g(nnz(X) + slogs ))
_ Z 2
Factorize [ o1 J = QR (cost: O(ns*<))
VAl

Use CG to solve Ka = yusing A~ (1, — ZR"IR~TZT) as preconditioner
(cost: O(n?) per iteration)




Larege Scale Multivariate Polynomial Regression

Dataset from an image processing application: Dataset from a speech recognition application:
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Classification problems: solved via regression using standard techniques.
Degree of palynamial s 3 for MNIST and 4 for TIMIT. For both datasels we rescale the features.

Run on BlueGene/Q using 128 nodes (= 2,048 cores).




Sketching for the Gaussian Kernel: Random Fourier Features
(Rahimi and Recht, 2007)

m Observation (due to Bochener’'s Theorem):

k(x,z) = E(exp(—iw’ (x — z)), w ~ N(0,07%1,)

m The sketch: sample wy, ..., w, and map

1 ~ :
x-»-:[e—iwl’x e—iwjx],
\."S

m There is no proof that this sketch has strong matrix multiplication guarantees.




Preconditioned Solver Works Well

Dataset from an image processing application: Dataset from a speech recognition application:
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Classification problems: solved via regression using standard techniques.
Degree of polynomial s 3 for MNIST and 4 for TIMIT. For both datasels we rescale the features.

- Run on BlueGene/Q using 128 nodes (= 2,048 cores).




Conclusions

Matrix sketching is a powerful technique for designing new exciting algorithms.

So far, it mostly addressed problems motivated by linear modeling.

However, effectively leveraging “big data” requires nonlinear and nonparametric modeling.

Matrix sketching can help for nonlinear modeling as well, but there is still much to be done.
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More General: Kernel Ridge Regression

Multivariate polynomial regression is a special case of kernel ridge regression.
In kernel ridge regression we start with a kernel k: R¢xR% — R.
The kernel defines an Hilbert space H.

We search for functions in ¥, i.g, solve
. ~ 2 ~ /
arf;m_mZ(yi —f(x)) + Al ll3
fEH £ 4
=
m Skipping ... some ... mathematical ... dejails, the solution is

f(x) =Za,—k(xl.x)

=1

where . ‘
(K+AlL))a=y

with K'] = k(.xi’x],)'




Larege Scale Multivariate Polynomial Regression

Dataset from an image processing application: Dataset from a speech recognition application:
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Classification problems: solved via regression using standard techniques.
Degree of palynamial s 3 for MNIST and 4 for TIMIT. For both datasels we rescale the features.

Run on BlueGene/Q using 128 nodes (= 2,048 cores),




TENSORSKETCH
(Pham and Pagh, 2013)

s S e R0 gefined by:

- q random hash functions hy, ..., hy:{1,...,.d + 1} = {1, ..., s}

- g random sign function g,, ...,g,:11,...,d + 1} = {—1,+1}
These define new sign and hash functions: .

H{ig, .. l5) = Z h;(i;) mod s
=1

G (i) mnriy) = ﬂjzl g;(i;)

- 8 is the CountSkeTCH matrix defined by H and G (after indexing rows by tuples).

TENSORSKETCH can sometimes be applied quickly (O(g(nnz(x) + s logs ))):
¢(x)S" = FFT~* (FFT(xST) © - O FFT(xS}))

where S; is the CountSKETCH matrix defined by k; and g;.




Efficient Use of the Preconditioner

The preconditioner is only useful if s < n.
Otherwise, we might as well compute and factor V,(X)V,(X)" + Al,,.

For s < n, we can do better than computing and factoring V, (X)STSV, (X)* + 41,,.

The Woodbury matrix identity imply that

T

: - 2 ~—1 o
(V(X)STSI,(X)T + A1, ) S A7 (1, — Vp(X)ST(SV, (X) TV, (X)ST + AL;)  SV,(X)T)

So, with 0(ns?) preprocessing we can apply the preconditioner efficiently.




Approximate Matrix Multiplication Properties
(with Nguyen and Woodruff)

Lemma:

2+
Suppose S 1S a TENSORSKETCH matrix with s =

34
— rows, then

c28

Pr(IIA-I-STSB - ATB| . < <f||A||r||B||r) >1—8

Corollary:

§ = O(rankA(V (X)?#) rows suffice for
for V, (X)V, (X)T + A1,.

Vo (X)STSV,(X)T + 21, to be a good preconditioner






