# A data-dependent weighted LASSO under Poisson noise

#### Rebecca Willett, University of Wisconsin-Madison



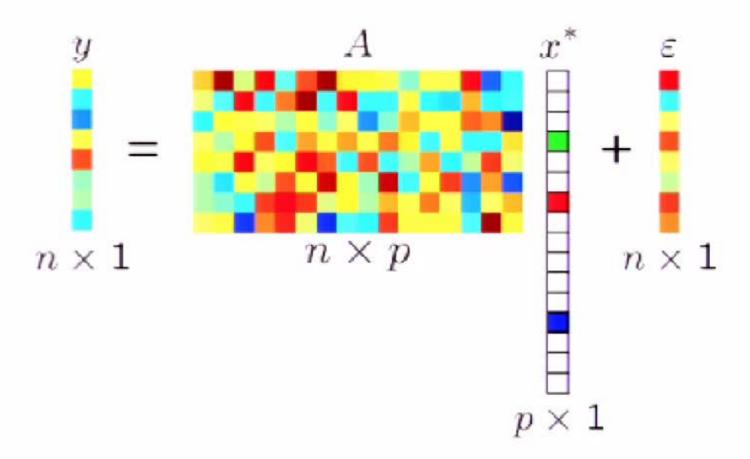
Xin Jiang



Patricia Reynaud-Bouret



Weighted LASSO




Vincent Rivoirard



Laure Sansonnet

## The LASSO for sparse inverse problems



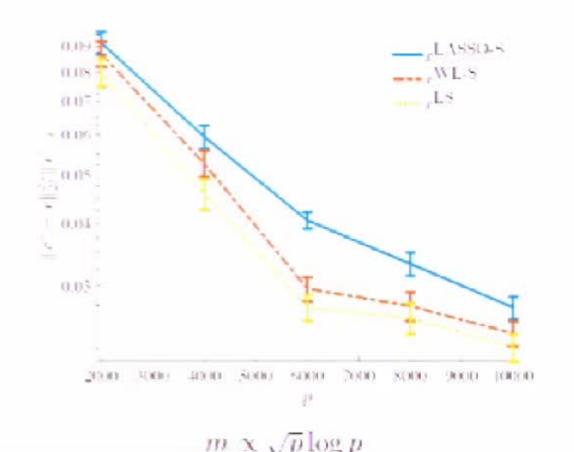
The LASSO estimator:

$$\min_{x} \frac{1}{2} ||y - Ax||^2 + \gamma ||x||_1$$

### Results

 If we have tight bounds on the backprojected residuals of the form

$$|\widetilde{A}^{\top}(\widetilde{y} - \widetilde{A}x^*)|_k \le d_k$$
.


then using these weights within the weighted LASSO can perform nearly as well as a support oracle.



- When there is significant variation among the d<sub>k</sub>s, the weighted LASSO can perform significantly better than the typical unweighted LASSO.
- We have examined two example systems:
  - Bernoulli ensembles for compressive imaging: we see similar rates as in earlier minimax analyses.
  - Random convolution in genetic motif analysis: earlier analyses could not address this!

## Motif rate results

|                | Small $m$                      | Large m                          |
|----------------|--------------------------------|----------------------------------|
| LASSO          | $\frac{s  x^*  _1\log^3 p}{m}$ | $\frac{s  x^*   _1 \log^2 p}{p}$ |
| Weighted LASSO | $\frac{ x^* _1 \log p}{m}$     | $\frac{s \ x^*\ _1 \log^2 p}{p}$ |



m is the number of parent events (blue dots)