Accelerating Direct Linear Solvers with Algorithmic and Hardware Advances

Xiaoye Sherry Li

xsli@lbl.gov

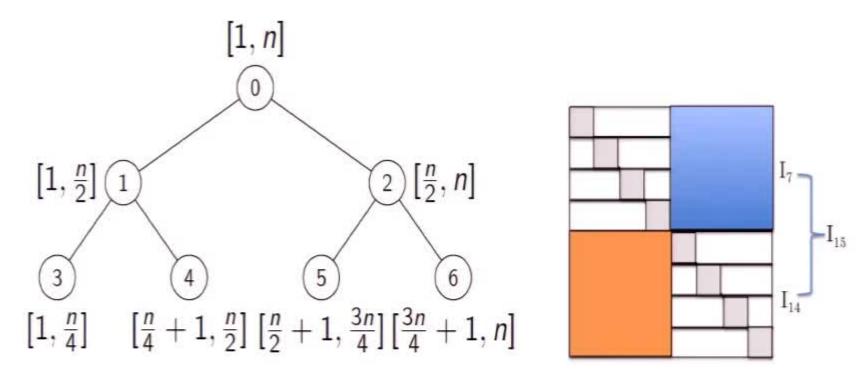
Lawrence Berkeley National Laboratory

SIAM Conference on Applied Linear Algebra, Oct. 26-30, 2015

1. Cluster tree, block cluster tree

Cluster tree $T_{\mathcal{I}}$ defines hierarchical partitioning of the index set [1, n].

- Each node is associated with an interval \mathcal{I}_{τ} .
- For children ν_1 and ν_2 , parent $\mathcal{I}_{\tau} = \mathcal{I}_{\nu_1} \cup \mathcal{I}_{\nu_2}$, and $\mathcal{I}_{\nu_1} \cap \mathcal{I}_{\nu_2} = \emptyset$

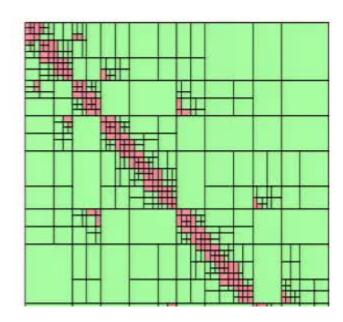


Block cluster tree $T_{\mathcal{I} \times \mathcal{J}}$ defines partitioning of the index set $\mathcal{I} \times \mathcal{J}$, both

Families of \mathcal{H} and \mathcal{H}^2 matrices

- Admissibile block (τ, σ) : max $\{diam(\tau), diam(\sigma)\} \le \eta \ dist(\tau, \sigma)$
- Strong admissibility: blocks next to diagonal not compressed, only compress well separated blocks
- ullet $\mathcal H$: split a node in a block cluster tree if its block is admissible
- ullet \mathcal{H}^2 : uniform \mathcal{H} partitioning, with nested bases

[Börn/Grasedyck/Hackbusch]



Various data-sparse formats

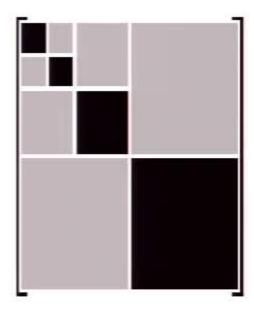
Method	Hier. part.	Nested bases	Admissibility	Family
HODLR	yes	no	weak	\mathcal{H}
HSS/HBS	yes	yes	weak	\mathcal{H}^2
Barnes-Hut	yes	no	strong	\mathcal{H}
FMM	yes	yes	strong	\mathcal{H}^2
BLR	no	no	weak	

Practical comparisons ... two other talks

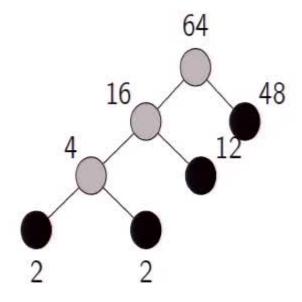
- Francois-Henry Rouet, MS39, Thursday, 11:45-12:10
 "A Comparison of Different Low-Rank Approximation Techniques"
- Rio Yokota, MS45, Thursday, 3:30-3:55
 "Comparison of FMM and HSS at Large Scale"

Making software robust

- Adaptive sampling machinery
 - Automatic handling unknown rank patterns: incrementally adjust sample size at any node when rank revealed is too large.
- Non-uniform clustering & partitioning



(c) Matrix structure.



(d) Weighted process mapping

Parallel weak scaling

Root node of the multifrontal factorization of a discretized Helmholtz problem (frequency domain, PML boundary, 10Hz).

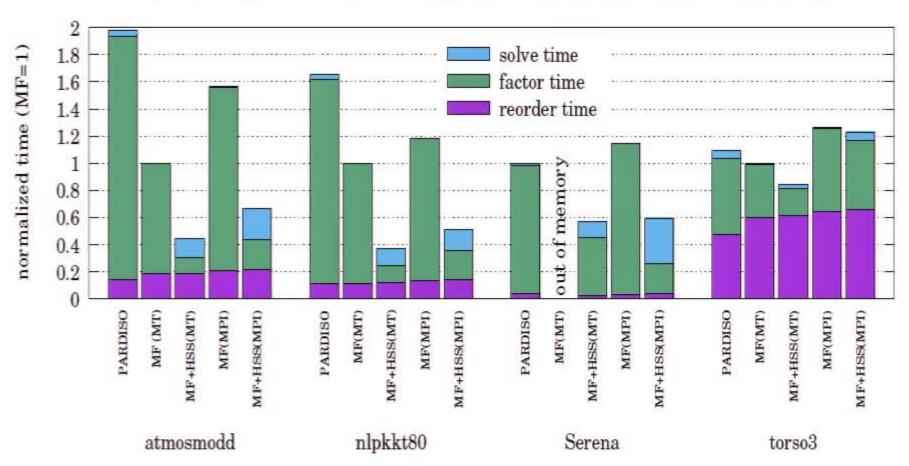
k (3D mesh: k^3)	100	200	300	400	500
Matrix size $(=k^2)$	10,000	40,000	90,000	160,000	250,000
# Cores	64	256	1,024	4,096	8,192
Maximum rank	313	638	903	1289	1625
Compression time	2.0	13.0	30.6	60.8	133.6
Speed-up over ScaLAPACK	1.8	4.0	5.4	4.8	3.9
Flops ratio	0.6	18.8	132.7	626.1	1716.7

Load imbalance

Parallel performance of sparse MF-HSS solvers

Cray XC30, Edison at NERSC

Pardiso (12 threads), MF/MF+HSS with 12 OpenMP threads and MF/MF+HSS with 12 MPI processes



Compared to PARDISO in Intel MKL library (12 threads)

Evolution of parallel machines, programming

- Vector machines, program with vectorization directives
- Shared memory UMA, program with directives or explicit threading
- Distributed memory machines presented major challenges
 - Data distribution, locality
 - Program with explicit messages, e.g., MPI
- Recently, heterogeneous node architectures, more disruptive
 - NUMA, socket / core / vector unit; accelerator / co-processor (e.g., GPU)
 - Memory per core is small
 - Program with mixed MPI & threads & CUDA ...

Mixing task parallelism and data parallelism.

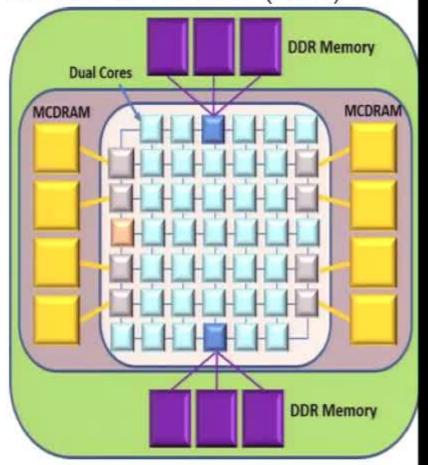
Variety of node architectures

Titan at ORNL: 16-core AMD + K20X GPU GDDR5 memory **NVIDIA**. KEPLER DDR3 memory Gemini

Programming:

Separate CPU/GPU programs

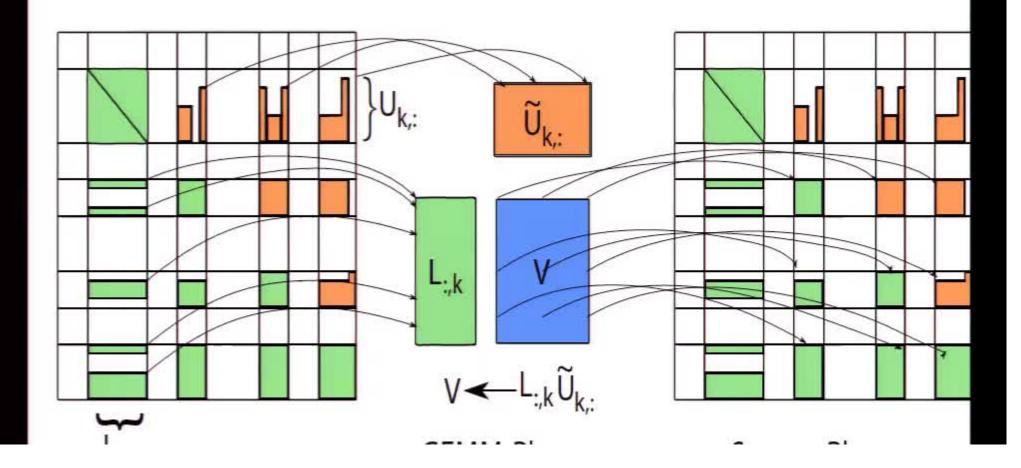
Intel Xeon Phi KNL (2016)



- 72 cores
- 4 threads/core

Schur-complement udate

- Over 80% factorization time, ample parallelism
- Two operations: GEMM, Gather/Scatter



Design questions for accelerator / co-processor

- Only use accelerator, or use CPU as well?
 Accelerator memory small
 → best to use both (offload some computations to GPU)
- What to offload?
 Panel factorization not suitable for fine-grained data-parallel model
 → offload only Schur complement update
- Schur complement update: GEMM, and Gather/Scatter?
 - GEMM only compute intensive [Sao/Vuduc/L. 2014]
 - Both GEMM and Gather/Scatter indirect addressing, memory intensive [Sao/Liu/Vuduc/L. 2015]

Overlap activities on both CPU/GPU to hide transfer latency over PCle bus (10-15 microseconds)

Further details ...

 Piyush Sao, MS48, Thursday, 4:00-4:25
 "A Sparse Direct Solver for Distributed Memory GPU and Xeon Phi Accelerated Systems"

Other sparse factorization GPU work:

- PARDISO: left-looking sparse LU, offload BLAS [Schenk/Christen/Burkhart, 2008]
- WSMP: multifrontal sparse Cholesky, offload BLAS [George et al., 2011]
- Multifrontal sparse Cholesky, offload frontal matrix computation [Krawezik and Poole 2009, Vuduc et al. 2011, Yu/Wang/Pierce 2011]
- Threading, offload large frontal matrix computation [Lucas et al., 2010]