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Networks — Linear Algebra

Adjacency matrices

0 0 1 O] 0 0 wy O O 0w O
O 0 1 1 0 0 Wo W3 0 0 W Wi
1 1 0 1 wy wo 0 wy 0O 0 0 wy
0110 0 ws w, O 00 0 O

For some positive edge weights w;.
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Analysis of large networks is nontrivial

Analysis of the properties of small graphs may be trivial.

%6%0

However, the analysis of large networks requires the use of
advanced linear algebra.

@ Human activity and relations.

@ Infrastructure planning, e.g., transport
networks and power grids.

@ Biology, e.g., protein—protein interaction
networks and disease spread.
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Node ranking

Numerical measure of the relative importance of a node in ‘
the whole network.

>

Importance is not unique, so there are many centrality
measures, e.g., for each node

@ Node degree - number of incident edges.
@ Total number of closed walks.

@ Total number of open walks.

@ Betweenness.

@ Eigenvector centrality.

@ ---
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Centrality from open walks

@ [AX]; - number of open walks of length k, from node i to
node j.

@ [A“1]; = > [A"]; - total number of open walks of
length k, originating from node /.

1 - vector of length n, all of whose elements are 1.

@ Y 2 [A*1]; - total number of open walks from node i.

Long and short walks are weighted equally.
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Comparison

@ Exponential Centrality c.(A) = ¢ 1
+ Very popular and successful.

— Computationally challenging.

E.g., social networks, biochemical applications,
anomaly detections in alarm systems, ...

@ Resolvent Centrality ¢, (A) = (/| — cA)~' 1
+ More convenient to compute.

— No agreed mechanism for selecting a.

E.g., supply chain management, sports team rankings,
musical influence analysis, ...
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Katz parameter

Find a value of the Katz parameter «, so that the
exponential and resolvent centralities give similar ordinal
node rankings.

Choose the Katz parameter as the solution of

min et 1 —(I— aA) 1 1]]5.

subjectto 0 < a < 1/p(A), where p(A) is the spectral radius
of A.
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Numerical resulis

. 1
@ Compare amyin = (1 — e*)/\; with ags = 0.5\—,
A1
1 1
s — 0.85—. ¢ = :
085 N %9 T Al + 1

@ We report the relative residual
res. = ||(e* — (I — aA) ") 1]|»/||€*1||2 and Kendall’s 7
and Spearman’s p correlation coefficients between the
ordinal ranking obtained with &1 and (/ — aA)~" 1.

@ We also report the correlation coefficients between
only the top-ranked nodes.
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Pajek/Erdos982

[Batagelj & Mrvar, 2006] A is symmetric, n = 5822, \{ = 14.8194.

0.16 - . 04 .
: Left: Kendall's + correlation
o.u§ Agw .+ 2 * 1 coefficients between the
;(,( % ; . ol x" | node rankings from full
o | 1 x = centrality vectors (left) and
¢ X | .
* X ol x X 1 from the top 1% only (right)
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“ex P g x | coefficients between & 1
o_o.;x a3l ¥ : and (I — ’,VIA)_1 1.
0 0.02 0.04 0.06 0.08 0 0.02 0.04 0.06 0.08
Katz parameter T40 Ttull P19 ot || r€Sref

amin — 0.0675 | 0.2507 | 0.0997 | 0.3540 | 0.1346 || 0.0215 |
aos =0.0337 | 0.0590 | 0.1153 | 0.0787 | 0.1545 | 0.9924
aggs =0.0574 | —0.1081 | 0.1101 | —0.1569 | 0.1498 | 0.9713 |
(geg = 0.0161 | —0.0205 | 0.1115 | —0.0490 | 0.1468 | 0.9954
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Manchester United FC

[D. J. Higham et al., 2014] A is weighted and nonsymmetric,
n= 148918, \; = 41.1511.

Top: Kendall's - and Spearman’s p correlation coefficients between &/ 1

and (/ — aA)~ "1 (broadcaster scores).
Bottom: Kendall's = and Spearman’s p correlation coefficients between

eA" 1 and (I — aAT)~"1 (receiver scores).

Katz parameter 19 Ttull P19 Otull reSg
amin = 0.0242 | 0.8489 | 0.6773 | 0.8959 | 0.7558 | 0.9995
ags = 0.0121 | 0.0247 | 0.4518 | 0.0287 | 0.5419 || 1.0000
apgs = 0.0205 | 0.0516 | 0.4524 | 0.0620 | 0.5423 || 1.0000
(rdeg = 0.0003 | 0.0125 | 0.4496 | 0.0192 | 0.5395 | 1.0000
Kaiz parameter 19 Ttull P19 Dfull reSrel
amin = 0.0242 | 0.7026 | 0.6828 | 0.7735 | 0.7529 || 0.9997
ags = 0.0121 | 0.0226 | 0.5342 | 0.0340 | 0.6287 || 1.0000
aggs = 0.0205 | 0.0408 | 0.5593 | 0.0617 | 0.6336 || 1.0000
adeg = 0.0001 | 0.0904 | 0.5385 | 0.1367 | 0.6354 || 1.0000
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Temporal networks

a\aﬁeﬂ

Ai = A(ty) A = A(b)

Dynamic walks
@ [ATAZ ... AW]; - number of open walks of length
K = Zf\; ki, from node i to node .

@ Y 2 [(ANAZ ... AN) 1]; - total number of open walks
from node 1.

Walks respect the direction of time.
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Centrality with multidamping

@ Exponential-based temporal centrality uses
()k'.(tj) — 1 /k;!.
The centrality vector is given by

Co(Ar.--- Ay) = Piele... N1

|[Estrada, 2013]

@ Resolvent-based temporal centrality with
multidamping penalizes walks of length
k=K +---+kybyaa?Z- - o
If a; < 1/p(A;), then the centrality vector is given by

CO(A1.--- AN) = (/—1»1A1)_1(/—112A2)_1 .. (/—HNAN)_1 2
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Matching temporal centralities

When do the (temporal) exponential and Katz-like
centralities give similar ordinal node rankings?

@ What choice for the Katz-like parameter achieves this?

@ What is a reasonable aggregation of the data into
adjacency matrices?

At each time interval t; we choose «; similarly to the static
case, i.e., aj = (1 — eMA))/\;(A;). We also want
p(A1) = p(Az) - - - = p(An).
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Conclusions

» A value for the Katz parameter, which tries to match
exponential- and resolvent-based centrality measures
and which is suitable for most practical problems,

1—e M
A\

x —
» Analysis is also suitable for temporal networks.

» In the future: establish how to meaningfully aggregate
temporal data in adjacency matrices.
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Conclusions

» A value for the Katz parameter, which tries to match
exponential- and resolvent-based centrality measures
and which is suitable for most practical problems,
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» Analysis is also suitable for temporal networks.

» In the future: establish how to meaningfully aggregate
temporal data in adjacency matrices.

THANK YOU!
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