

Matching Centrality Measures in Complex Networks

Mary Aprahamian
School of Mathematics
The University of Manchester

mary.aprahamian@manchester.ac.uk

SIAM Conference on Applied Linear Algebra 2015

Joint work with Nick Higham (U of Manchester) and Des Higham (U of Strathclyde)

Networks — Linear Algebra

Adjacency matrices

$$\begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix} \qquad \begin{bmatrix} 0 & 0 & w_1 & 0 \\ 0 & 0 & w_2 & w_3 \\ w_1 & w_2 & 0 & w_4 \\ 0 & w_3 & w_4 & 0 \end{bmatrix} \qquad \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 0 & w_1 & 0 \\ 0 & 0 & w_2 & w_3 \\ 0 & 0 & 0 & w_4 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

For some positive edge weights w_i .

Analysis of large networks is nontrivial

Analysis of the properties of small graphs may be trivial.

However, the analysis of large networks requires the use of advanced linear algebra.

Examples

- Human activity and relations.
- Infrastructure planning, e.g., transport networks and power grids.
- Biology, e.g., protein—protein interaction networks and disease spread.

Node ranking

Centrality

Numerical measure of the relative importance of a node in the whole network.

Importance is not unique, so there are many centrality measures, e.g., for each node

- Node degree number of incident edges.
- Total number of closed walks.
- Total number of open walks.
- Betweenness.
- Eigenvector centrality.
-

Centrality from open walks

- [A^k]_{ij} number of open walks of length k, from node i to node j.
- $[A^k \, \mathbf{1}]_i = \sum_{j=1}^n [A^k]_{ij}$ total number of open walks of length k, originating from node i.
- 1 vector of length n, all of whose elements are 1.
 - $\sum_{k=0}^{\infty} [A^k \mathbf{1}]_i$ total number of open walks from node *i*.

Problem Long and short walks are weighted equally.

Comparison

- Exponential Centrality $c_e(A) = e^A 1$
 - + Very popular and successful.
 - Computationally challenging.

E.g., social networks, biochemical applications, anomaly detections in alarm systems, ...

- Resolvent Centrality $c_{\alpha}(A) = (I \alpha A)^{-1} \mathbf{1}$
 - + More convenient to compute.

Mary Aprahamian

- No agreed mechanism for selecting α .

E.g., supply chain management, sports team rankings, musical influence analysis, ...

Katz parameter

Problem

Find a value of the Katz parameter α , so that the exponential and resolvent centralities give similar ordinal node rankings.

Choose the Katz parameter as the solution of

$$\min_{\alpha} ||e^{A} \mathbf{1} - (I - \alpha A)^{-1} \mathbf{1}||_{2}^{2},$$

subject to $0 < \alpha < 1/\rho(A)$, where $\rho(A)$ is the spectral radius of A.

Numerical results

• Compare
$$\alpha_{\min} = (1 - e^{-\lambda_1})/\lambda_1$$
 with $\alpha_{0.5} = 0.5 \frac{1}{\lambda_1}$, $\alpha_{0.85} = 0.85 \frac{1}{\lambda_1}$, $\alpha_{deg} = \frac{1}{||A||_{\infty} + 1}$.

- We report the relative residual $res_{rel} = ||(e^A (I \alpha A)^{-1}) \mathbf{1}||_2/||e^A \mathbf{1}||_2$ and Kendall's τ and Spearman's ρ correlation coefficients between the ordinal ranking obtained with $e^A \mathbf{1}$ and $(I \alpha A)^{-1} \mathbf{1}$.
- We also report the correlation coefficients between only the top-ranked nodes.

Pajek/Erdos982

[Batagelj & Mrvar, 2006] *A* is symmetric, n = 5822, $\lambda_1 = 14.8194$.

Left: Kendall's τ correlation coefficients between the node rankings from full centrality vectors (left) and from the top 1% only (right) as a function of α .

Bottom: Kendall's τ and Spearman's ρ correlation coefficients between e^A 1 and $(I - \alpha A)^{-1}$ 1.

Katz parameter	T1%	Tfull	P1%	Pfull	res _{rel}
$\alpha_{\min} = 0.0675$	0.2507	0.0997	0.3540	0.1346	0.0215
$\alpha_{0.5} = 0.0337$	0.0590	0.1153	0.0787	0.1545	0.9924
$\alpha_{0.85} = 0.0574$	-0.1081	0.1101	-0.1569	0.1498	0.9713
$\alpha_{deg} = 0.0161$	-0.0205	0.1115	-0.0490	0.1468	0.9954

Manchester United FC

[D. J. Higham et al., 2014] A is weighted and nonsymmetric, n = 148918, $\lambda_1 = 41.1511$.

Top: Kendall's τ and Spearman's ρ correlation coefficients between e^A 1 and $(I - \alpha A)^{-1}$ 1 (broadcaster scores).

Bottom: Kendall's τ and Spearman's ρ correlation coefficients between e^{A^T} 1 and $(I - \alpha A^T)^{-1}$ 1 (receiver scores).

Katz parameter	T1%	Tfull	ρ1%	Pfull	res _{rel}
$\alpha_{\min} = 0.0242$	0.8489	0.6773	0.8959	0.7558	0.9995
$\alpha_{0.5} = 0.0121$	0.0247	0.4518	0.0287	0.5419	1.0000
$\alpha_{0.85} = 0.0205$	0.0516	0.4524	0.0620	0.5423	1.0000
$\alpha_{deg} = 0.0003$	0.0125	0.4496	0.0192	0.5395	1.0000

Katz parameter	T1%	[⊤] full	ρ1%	Pfull	res _{rel}
$\alpha_{min} = 0.0242$	0.7026	0.6828	0.7735	0.7529	0.9997
$\alpha_{0.5} = 0.0121$	0.0226	0.5342	0.0340	0.6287	1.0000
$\alpha_{0.85} = 0.0205$	0.0408	0.5593	0.0617	0.6336	1.0000
$\alpha_{deg} = 0.0001$	0.0904	0.5385	0.1367	0.6354	1.0000

Temporal networks

Dynamic walks

- $[A_1^{k_1}A_2^{k_2}\cdots A_N^{k_N}]_{ij}$ number of open walks of length $k=\sum_{i=1}^N k_i$, from node i to node j.
- $\sum_{k=0}^{\infty} [(A_1^{k_1} A_2^{k_2} \cdots A_N^{k_N}) \mathbf{1}]_i$ total number of open walks from node i.

N. B. Walks respect the direction of time.

Centrality with multidamping

Exponential-based temporal centrality uses

$$\alpha_{k_i}(t_i) = 1/k_i!$$

The centrality vector is given by

$$c_e(A_1, \cdots, A_N) := e^{A_1} e^{A_2} \cdots e^{A_N} 1$$
.

[Estrada, 2013]

 Resolvent-based temporal centrality with multidamping penalizes walks of length

$$k = k_1 + \cdots + k_N$$
 by $\alpha_1^{k_1} \alpha_2^{k_2} \cdots \alpha_N^{k_N}$.

If $\alpha_i < 1/\rho(A_i)$, then the centrality vector is given by

$$\mathbf{c}_{\alpha}(A_1,\cdots,A_N):=(I-\alpha_1A_1)^{-1}(I-\alpha_2A_2)^{-1}\cdots(I-\alpha_NA_N)^{-1}\mathbf{1}.$$

Matching temporal centralities

Problem

When do the (temporal) exponential and Katz-like centralities give similar ordinal node rankings?

- What choice for the Katz-like parameter achieves this?
- What is a reasonable aggregation of the data into adjacency matrices?

At each time interval t_j we choose α_j similarly to the static case, i.e., $\alpha_j = (1 - e^{\lambda_1(A_j)})/\lambda_1(A_j)$. We also want $\rho(A_1) \approx \rho(A_2) \cdots \approx \rho(A_N)$.

Mary Aprahamian

Conclusions

- A value for the Katz parameter, which tries to match exponential- and resolvent-based centrality measures and which is suitable for most practical problems, $\alpha = \frac{1 e^{-\lambda_1}}{\lambda_1}.$
- Analysis is also suitable for temporal networks.
- In the future: establish how to meaningfully aggregate temporal data in adjacency matrices.

Conclusions

A value for the Katz parameter, which tries to match exponential- and resolvent-based centrality measures and which is suitable for most practical problems, $\alpha = \frac{1 - e^{-\lambda_1}}{\lambda_1}.$

- Analysis is also suitable for temporal networks.
- In the future: establish how to meaningfully aggregate temporal data in adjacency matrices.

THANK YOU!